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ORIGINAL P A M  IS 
OF POOR QUALKY 

ABSTRACT 

0 The values of the NRCS, U , obtained by a scatterometer a: 

random variables. They are random variables with the property th, 

the variance is a known function of the expected value (or the me( 

in a loose sense). The probability density function has featurc 

that allow required probabilities to be obtained from the norm 

distribution. Models for the expected value obtain it as a functil 

of the properties of the waves on the ocean and the winds th, 

generated the waves with the goal of obtaining wind speeds a 

directions. 

A scatterometer presently in the design stage has improved fe 

tures compared to the SASS on SEASAT in that the backscatter valu 

are closely located on a well defined grid. Also the requir 

parameters are known from the design features of the instrument. 

Point estimates of the expected value, u:, are found frl 

various statistics given the parameters that define the probabili 

density function for each value. Random intervals are derived wi 

a preassigned probability of containing the value, u:. 

statistical test to determine whether or not successive values 

o are truly independent is derived. 0 

Ways to correct for certain kinds of errors in a model sole 

by means of backscatter data are derived. Ways to use convention 

measurements from the National Data Buoy network to interpr 

backscatter models more thoroughly and to either improve them 

validate them are found. 

vi 



The maximum likelihood estimates for wind speed and direction 

are found, given a model for backscatter as a function of the 

:properties of the waves on the ocean. These estimates are biased 

as a result of the terms in the equation that involve natural 

logarithms, and calculations of the point estimates of the maximum 

Vii 



1. INTRODUCTION 

1.1 Historical review. The term llscatterometertl was coined 

by R. K. Moore (Personal Communication, 1986) and used in the de- 

scription of a radar-radiometer by Moore and Ulaby (1969). A 

scatterometer differs from other radars in that estimates both of 

the received signal power plus the receiver noise power and of 

the receiver noise power alone are obtained. The latter is then 

subtracted from the former to obtain an estimate of the received 

signal power alone. Both of these randomly varying quantities 

are measurable and of course, by definition, positive. However, 

if the randomly varying received signal power is very small com- 

pared to the randomly varying receiver noise power, subtracting 

the randomly varying noise power from the randomly varying signal 

plus the noise power can produce a negative value for the ran- 

domly varying estimate of the received power. 

Scatterometer data are used to attempt to determine the 

speeds and directions of the winds over the ocean by means of 

backscatter estimates obtained from a scatterometer on a polar 

orbiting spacecraft at an altitude of about 800 km. The first 

attempt to do this globally was by means of the SASS on SEASAT. 

At first it was believed that the wind speeds and directions ob- 

tained from the backscatter estimates were quite good as in Duffy 

and Atlas (1986), Pierson, et al. (1984), and Woiceshyn, et al. 

(1985) . Further studies have revealed various kinds of 

systematic errors in the wind recoveries, most noteably as de- 

scribed by Woiceshyn, et al. (1986). 

1 



1.2 Desiqn features. Schematic versions of a new sca'nning 

pattern are shown in Figs. 1 and 2. If to scale, each square 

would represent an area of the ocean surface that is 25 by km. 

Two possibilities for obtaining backscatter data for each of these 

areas are under consideration. 

2 5  

The scanning pattern as in Fig. 1 consists of 25 by 25 km 

squares oriented both parallel to the subsatellite track at 

nearly a constant, but different, incidence angle for each of 

the four measurements over considerable distances and normal to 

the track for incidence angles that vary from about 15 to 590. 

The along track variation of the  parameters associated with each 

backscatter value is small over distances of several hundred km, 

but the cross track variation is rather large. There are 24 

areas, each 25 by 25 km, for a total distance of 600 km normal to 

the subsatellite track on each side of the track. The incidence 

angle, including the beam at 115', varies from about 15.6' to 

59.1'. 

0 

One possibility, as shown in Fig. 2, is to have one ver- 

tically polarized and one horizontally polarized value for the 

backscatter estimates obtained from forward looking antennas at 

45' to the subsatellite track to the right. side. A third 

estimate would be obtained by means of an antenna at 115' to the 

track, quite possibly for horizontal polarization. The fourth 

for vertical polarization would be at 135' to the track. 

The second possibility is a vertically polarized estimate at 

45 O, both vertically and horizontally polarized estimates at 115' 

and a vertically polarized estimate at 135 . The first of these 0 
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F i g .  1 Schematic Drawing of Large Scale  Grid of 2 5  by 2 5  Km Areas. 
The Chessboard Pattern i n  the  Expanded V i e w  Actually F i l l s  
t h e  Entire Area. A l l  Squares Provide Data. 
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Fig. 2 Two Possible Combinations of Four Backscatter Estimates 
for the Right Side Looking Forward. 
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two possibilities seems to offer the surest opportunity to 

recover unique values for the wind speed and direction because 

of the apparent marked difference between upwind backscatter 

estimates and downwind backscatter estimates when vertically and 

horizontally polarized values are compared for high winds and 

high incidence angles. The first of these two possibilities will 

be used in a subsequent section. The changes required for the 

second possibility are easy to make. 

' coherent, which means that the envelopes of the time varying 

signal plus the noise as, say, voltages can be described instan- 

taneously by a Rayleigh probability density and that the power 

Fig. 2 illustrates a feature of the actual data in that the 

pointing directions of the radar beams are not exactly 70' and 

90' behind the lead beam. This produces minor shifts in the 

various inverse curves that result and complicates the recovery 

of the winds from a computational point of view. This aspect of 

the problem will be neglected in the analyses and discussions to 

follow. 

This new design as in Chi, et al. (1986) and Chi, et al. 

(1987) and in terms of various other sources of variability for 

the estimates, such as attitude errors, orbital errors, and 

I squint, is a vast improvement over the SASS. The major dif- 

I ficulty will be to obtain a correct theory, or model, to relate 

' the backscatter estimates to the waves on the ocean and then the I 

i winds that generated the waves. 

I 

I 

1.3 Probability concepts. Both the backscattered signal 

from the waves on the ocean and the receiver noise are in- 



N 
N 1  i 

x = - c x  - 1  

has an exponential distribution. Successive values from these 

envelopes are correlated for short time intervals. 

The Doppler shift as a function of the position of a given 

small area of the ocean and of the velocity of the spacecraft al- 

lows successive small areas as in Figs. l and 2 to be sampled and 

estimates of the backscatter to be obtained for each one. The 

new feature of the present design is that digital data processing 

and filtering will make the precise alignment of the areas il- 

lustrated in these two figures possible. 

Probability theory and statistical methods are involved in 

the design of a scatterometer as described by Chi, et al. (1986) 

and Chi, et al. (1987). The design involves combining a large 

number of quasi independent estimates of the random variables ob- 

tained by the instrument so as to obtain a much more stable, less 

randomly varying, estimate of the backscatter. 

Although the theory of sampling from a normal distribution 

with an unknown expected value for the first moment about the 
2 2  origin, conventionally, p ,  and an unknown variance, C (x- u) =a 

(note this is not a'), does not quite apply, a scatterometer es- 

sentially obtains a large number of estimates of a random 

variable, say, X I ,  X 2 ,  X 3 ,  .... X n  and finds the average as in 

It then, in a way, follows that the expected value of is 

given by 

& (XI = 1-I 
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and that the variance of is 

The single number that is obtained from one of the four dif- 

ferent estimates of the backscatter from the waves in a given 25 

by 25 km area on the ocean is thus analogous to the in Eqn. 

(1) , and the var ance of the estimate (i.e. ) is analogous to 

the expected value given in Eqn. (3). The analogy is not exact. 

Therein lies both the value of a scatterometer and the dif- 

ficulty in interpreting the estimates of the backscatter. One 

purpose of this paper is to explain this difficulty and to 

provide a correct theory for the interpretation of the 

backscatter estimates. 

7 



2. DEFINITIONS 

2.1 The quantities involved. For the analysis to follow, 

certain definitions are needed. These are: 

oo is a random variable. 

0 oo is the expected value of 0 . M 

0 2  0 
V A R ( a o )  = a(a,) + B o i  + y is the variance of (J . 

0 SD( a') = (VAR(oo ) ) '  is the standard deviation of o . 
0 Since the variance is a known function of oM,VAR(oo) and 

SD (a') will be replaced by VAR(o;) and SD ( 0 ; )  throughout. 

a, f3 and y are known design parameters for the scatterometer 

for a known 25 by 25 km cell and polarization. 

0 
In these definitions, 0 is the value of the normalized 

radar backscattering cross section obtained by a scatterometer, 

and DM is its expected value. The purpose of the definitions is 

to tie together concepts used in the theory of probability and 

statistics with those used in scatterometery and to avoid confu- 

sion between the notations used in the two different subject 

areas. 

0 

2.2 The probability density function. With these 

definitions, the probability density function for oo is given by 

8 



I ' as first obtained by Fischer (1972). It is not usually necessary 

1 to designate the polarization of the backscatter in the following 
' until analysis so that the appropriate subscripts will be omitted 

they are needed. There is only one unknown parameter in Eqn. 
0 0 

(4). It is oM$and if it is known, both the expected value of u 

and the variance of oo are known. The range of definition for oo 

is 

- a, < Go < a, 

but the range of definition of 0; is 

o < a o < a ,  - M  

because the theory for backscatter from any target does not admit 

-negative values. It is conceivable, however, that there could be 

no backscatter at all from certain kinds of targets, or that the 

value of u i  could be so low that it could be virtually in- 

distinguishable from zero. Eqn. (4) still has a meaning if 0; 

is zero. For the derivation of Eqn. ( 4 ) ,  it is assumed that both 

the expected value of the receiver noise and the variance of the 

noise are constant. The backscatter estimates recovered by the 

SEASAT SASS for some incidence angles ranged over 40 dB. For 

some theoretical purpose it may be necessary to show results in 

dB if 0 is positive. For the practical uses of the data, there 

does not seem to be any reason to use dB for the recovery of 

winds. 

0 
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3. THE MEANING OF 0; 

3.1 Backscatter theories. Theories for the calculation of 

radar backscatter from the ocean surface attempt to predict the 

value of DM from either the properties of the waves or the study 

of backscatter data. The most recent models are those of Wentz, 

et al. (1984) and Wentz, et al. (1986), Iwata (1985), Durden and 

Vesecky (1985), Plant (1986) and Donelan and Pierson (1987). 

These models do not treat separately some properties of the waves 

known to produce backscatter such as breaking waves (Banner and 

Fooks, 1985) and wedges (Lyzenka, et al. 1983, Kwoh and Lake, 

1984). In general, oo is some function of the properties of the 

waves and thus indirectly some function of the winds (both past 

and present over the entire ocean) that generated the waves. 

as More specifically, it should be possible to represent 

dominantly a function of the wind speed and the direction of the 

wind (relative to the pointing direction of the radar beam) for 

the area being analyzed and to account for such effects as fetch, 

duration, swell, breakers, wedges, and water temperature in the 

process of estimating the winds. To do this requires the com- 

bined efforts of oceanographers, meteorologists and radar scien- 

tists. Numerous estimates of backscatter obtained by measure- 

ments from radars on platforms in oceans or lakes, on aircraft 

and on SEASAT have yielded data that can be compared with models 

for aM. 

0 

bl 

0; 

0 

The last four models referenced above (there may be others) 

are based on the two scale theory reviewed by Valenzuela (1978). 

The separation of scales wavenumber is a matter of considerable 

10 



debate. Backscatter theories that claim to avoid the separation 

of scales assumption have both proponents and opponents as in 

Bahar (1987) and Guissard (1987) and the references contained 

therein. 

One purpose of this paper is to find bounds on 0: so that 

various models can be tested operationally. The value of u i  for 

a particular sample value of u from Eqn. ( 4 )  can be assumed to 

be known theoretically based on some model for backscatter from 

the waves on the ocean. For purposes of analysis in the material 

on maximum likelihood estimates and the use of various models it 

will be assumed that, with polarization included, 

0 

0 0 
= 0 (6, x, e) %V w 

where 8 the incidence angle, is known. 

3.2 The specification of the wind. It is not necessary to 

specify height at which the mean effective windspeed fi f o r  a 

neutrally stratified atmosphere is to be measured. Some inve- 

stigators use u, instead of 0. If the logarithmic wind profile 

for a neutrally stratified atmosphere is used and if the friction 

velocity is determined by one of the usual methods to be 

the 

11 



then u, and zo are both functions of 0 (10). The wind at 10 m, and 

the wind at any height, or u, are all equivalent. In the Monin- 

Obukhov theory, all wind profiles are logarithmic close to the 

sea surface. There are differences as far as some backscatter 

theories are concerned, and there are many different versions for 

the right hand side of Eqn. (9). Also for other than neutral at- 

mospheric stability, Monin-Obukhov theory is needed to interpret 

cornparions of conventionally measured winds with backscatter 

data. The air-sea temperature difference is required from some 

other source to compute the actual wind at greater heights from 

the effective neutral wind. Hasse (1986) has discussed the 

various concepts that are involved. Donelan (1982) has provided 

an analysis to support the contention that the right hand side of 

Eqn. (9) is also a function of the waves on the ocean. The 

values of (7) and (8), or improved models for OM, vary over many 

orders of magnitude in such a way that it should be possible to 

recover estimates of fi and X from the backscatter estimates. 

0 
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4. PROPERTIES OF EQUATION 4 

4.1 Monte Carlo methods. The transformation 

changes Eqn. (4) to Eqn. (9). 

The random variable, t ,  is a sample value from a normal 

probability density function with an expected value of zero and a 

standard deviation of one. From (10) it follows that Do can be 

represented by Eqn. (12). 

u0 = UO M + t SD(0;) 

The sampling variability of Uo in Eqn. (4) is entirely equivalent 

to the values obtained fron Eqn. (12). If some model for u i  is 

available, even if it is not fully correct, then OM can be used 

to generate random values of (7 . These in turn can be used to 

obtain winds recovered from simulated Uo estimates and test the 

algorithms designed to do this. The theoretical values of OM 

need not necessarily be correct for this to be done. The model 

0 

0 

0 

values, u i ,  need not necessarily correspond to the best model 

values that would recover more nearly correct winds. 

13 



4 . 2  Jp The normalized standard deviation. Eqn. (12) can 

be used to obtain Kpas follows: 

0 
Uo = aM (1 + t SD(oi)/oi) 

0 = aM (1 + t Kp)) 

0 As oM approaches 0, K approaches infinity. As ao approaches in- P M 
finity, Kp approaches CL + . 

0 4 . 3  The normalized expected value. From Eqn. (10) if uhl is 

known, a random variable can be defined by 

Y = oo/SD(U;) 

and its expected value is 

e (Y) = M = oM/SD(o;) 0 

The probability density function is then 

The variance of Y is one. Eqn. (17) has the same shape as the 

graph of the unit variance zero mean normal distribution, but it 

is centered at the value, M. For aM = 0, M = 0 . A s  aM becomes 

large, M asymptotically approaches ci . Also M is the reciprocal 

of Kp defined as in Eqn. (18). 

0 0 

-+ 

M = l/Kp 

14 



Given o i ,  a, 6 and y the probability that Y and hence uo 

will be negative can quickly be guessed, or computed, since M 

represents the number of standard deviations that the expected 

value lies away from zero. of 

the areas that would be sampled, a possible value of a is 0.02 so 

that a-' equals 0.14-1 or 7.07. The integral of the unit 

variance zero mean normal probability density function from -a3 to 

-7 is a very small number. Thus a negative estimate of 0' would 

be highly improbable. For uMequal to zero, M is zero, and the 

probability of a negative value of Y or oo is 0.50. The standard 

deviation of oo is then p. 

0 For large values of aM and for one 

0 

0 Although Eqn. ( 4 )  has a range for 0 over all possible posi- 

tive and negative values and for ab! from zero to infinity, 

probability models are both unrealistic and unverifiable over 

their entire domain of definition. The actual instrument sets 

physical limits that constrain the random variables and unknown 

parameters in ways that are features of its design. A value of M 

equal to 4 or more is sufficient to ensure that the chance that 

uo will be negative is negligible. 

0 
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5 .  POINT ESTIMATES OF POPULATION PARAMETERS AND RANDOM 
INTERVALS FOR POPULATION PARAMETERS 

5.1 The concepts. Given an independent random sample of 

values from a population with a probability density function with 

a known form, but with one or more unknown parameters that define 

it more exactly, the classical statistical problem is to estimate 

the unknown parameters. An independent random sample from a 

normal- distribution with an unknown expected value and an unknown 

variance provides the data from which various statistics can be 

computed so as to obtain point estimates of the two parameters 

and so as to construct intervals whose end points have a pre- 

assigned two 

population parameters. The procedures are a part of the clas- 

sical literature on the subject and the random intervals are con- 

structed from statistics that involve the "student t1I distribu- 

tion and the Chi Square distribution. All terms and the methods 

that are used are carefully defined in, for example, Mood, et al. 

probability of enclosing the values of each of the 

(1974), except that the intricate notation of this reference has 

been simplified in this paper. 

For scatterometers in general and for any new design, a 

statistician is thus faced with the task of stating as much as 

possible about the unknown population parameter, 0' given at 

first a single value, i.e., a sample of size one, for the random 

variable, a'. Clearly the standard methods applied to a sample 

from a normally distributed population do not apply. As de- 

scribed above, the data from the scatterometer have already been 

processed extensively to the extent that the random variable, O o ,  

is like the Xin Eqn. (1) and the variance is like Eqn. ( 3 )  for 

bl ' 
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quite large N with the major difference being that the variance 

is a function of the first moment about the origin. 

5.2 Probabilities. For purposes of further analysis the 

random variable t in Eqns. (lo), (ll), and (12) will be, at 

times, defined with subscripts so as to differentiate different 

values. Also at times the absolute value of these subscripted 

values will be assigned a sign to designate whether the sub- 

scripted value is positive or negative. 

The integral of Eqn. (11) is often given in tabular form 

The definition 

1 

(pre-computer ) 

say, +It21 I as 

@(+lt21) = 

from minus infinity to some positive value of t, 

in 

+ I t 2 1  
2 exp (-t /2)  d t  

J -m 

can readily be extended to 

1 so that 
I 

I 

I With these definitions, it .follows that 

1 7  



Where P(*) means that the probability that ao will fall in the 
interval defined by - 1  til, u i  , SD(U;) and +Itz] is given by the 

right hand side of the equation. 

5.3 Point estimates. Given a sample from a known 

probability density function, hereafter PDF, with unknown 

moments, the first moment about the origin can be estimated by 

the sample mean. itself 

so that 

The average of one number is that number 

0 u; = u 

is an estimate of u:. This estimate is not a particularly good 

one since, from Eqn. (22), it scatters by a considerable amount 

about the expected value of u: for, say Itl! = It21 = 1. This 

point estimate was substituted into the equation for the standard 

deviation to estimate the scatter of uo for reduction of the 

SEASAT SASS data. 

An alternative point estimate is the maximum likelihood 

estimate of OM . For a given sample 0' is known, and the maximum 

likelihood estimate of u i  is that value of u i  that maximizes 

f(uo)for the sample value of 0 . Omitting the MA IT)-', multiplying 
by, or adding, constants does not change the location of the max- 

hum. Also since the natural logarithm of f(a ) is more con- 

venient to work with, the result can be put in the form of Eqn. 

0 

1 0 

0 

( 2 4 )  

18 



0 ' as OM is varied. The constant in the denominator of the 

logarithmic term causes the function to be zero when aM = (3 

The derivative of Eqn. (24) with respect to (3; when set to zero 

gives the M L E  if that part of the PDF is considered for which 

oo # 0 . The result is a cubic equation. A simple search by a 

computer subroutine can generally locate M L E (  OM). It is 

slightly less than uM Values of the M L E  will be given later 

based on newly available design parameters. 

0 0 

0 
M 

0 

r 

Consider for example, n values of a'for a row parallel to 
0 0 0 

n 

1 
1 0 
n = - (n aM + 1 tiSD(oi)) 

are 0 2  I 
(12). The expected values of 6' and (ao - oh$ I f r o m  Eqno 

then 

19 



1 0 

n 
= 7 n VAR(aM) 

2 since &(t i )  = 1 and (tp, tq) = 0 (pZq) . Effectively, averaging n 

values of a' along a row reduces a, B and y byn-l. 

Similarly, areas that are n long by n wide could be repre- 

sented by 

0 0 
= a + t . .  SD(ao ) ' i j  Mij ij M i  j 

The average would be approximately 

n n  8' = - 1 ( 1 1 (8; + t i j  SD(6;ij))) 

n * 1 1  
so that 

-0 -0 'L 
effective value of the uo (30) &(a ) = OM = 

M i  j 

where 6; 
of the larger area. 

could represent the effective model value at the center 

The variance would be 

20 



1 The a's, B's, and y's for the n2 areas could be summed to find an 
-2 , effective value for them. The variance would be reduced by n . 

1 

Further analysis is needed to decide on some of these steps. 

lustration of this concept. The horizontal axis is 0; and the 

vertical axis is Do for the ranges defined by (5 ) and (6 ) . For, 

say, ltll = It2\ , the two continuous curves in Eqn. (22) can be 

graphed. The range of 0 for a particular is shown by the ver- 

tical line, and uo is a function of 0:. 

I 

0 0 

' 

The probability that uo will equal a value somewhere on this 

vertical line is given by the right hand side of Eqn. (22). For 

any of these possible random values of uo that lie on the example 

vertical line, a horizontal line can be drawn between the upper 

and lower curves. Any one of these lines will intersect the ver- 

tical line for the example value of uM. Two examples, out of an 

infinite number are shown by a continuous line and a dashed line. 

0 

Essentially uo is a function of the chosen values of ltll , 

I It21 and uo as in (32a) and (32b). M 

(32b) 0 0  " = ' ('M ,Itll) 

If the two equations can be inverted so as to find (33a) and 

21 
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,which is equivalent to interchanging the independent and depen- 

dent variables, then 

0 0  if oM(o I t2 11 is greater than zero. 

Eqn. (34) describes an interval fo r  this case with lower and 
upper bounds that are a function of the random variable, 0 ,  0 

i.e., the measurement made by a scatterometer, which is known. 

The The interval is consequently a 

statistic. It can be computed, given a, f3 andy for each sample 

value. 

tained in this random interval. 

value of u i  is not known yet. 

The parameter, ob! 0 , has the above probability of being con- 

If ao > + It2(? as shown by a dash-dot line three additional 

1 probabilities can be found. The value 

I 
+ It31 = a0/? (35) 

i can be computed. Then 
I 

and 
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The sum of the probabilities in (34), (36), (37), and (38) 

is one as a check. The equations divide the area above o 0 =+It ly + 2 
in the first quadrant into the line o i  E 0 and 
and region I11 as shown. 

I If oo falls between + It 1;' and - 2 
and V in Fig. 1 the value of, say, 

t4 = ao/y 4 

region I, region 11 

y' as in Regions IV 

(39) 

can be found even if O' is negative. Three probabilities can be 

defined as follows: 

P(OM 0 s 0) = 1 - @(t,) (40) 

(and, in particular, if GO is zero, the probability that O: E O  

is 0.5) 

Again the probabilities add to one. 

If o0 is less than - I tl as in Region VI of Fig. 1, the 

quantity 

(43) 
t5 = ao/y % 

can be found. The two probabilities are 
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0 P(a 2 0) = 1 - @(t,) M 

P(0 < uO) = @(t5) M 

( 4 4 )  

( 4 5 )  

It is important to be able to interpret negative values of 

the random variable, u .  The triangular area in Region V of Fig. 

1 shows that there is a non-negligible probability for a random 

interval that will contain a positive value of uM even if Uo is 

negative. 

0 

0 

Two typical choices for It,l = ltll are 1 and 1 . 6 4 5 .  For 

the value, 1, the right hand side of ( 3 4 )  equals 0 . 6 8 2 6 .  For the 

value, 1 . 6 4 5 ,  it equals 0.90. There is no particular reason why 

four different curves could not be graphed on Fig. 3 to delineate 

these other probabilities. 

25 
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6.  SIMPLIFIED RESULTS FOR LARGE VALUES OF 0: 

The standard deviation of 0' can be re-written as Eqn. (46)  

where 

For large values of 0; the first term in ( 4 6 )  dominates the 

second, and the second term can be neglected to obtain an approx- 

imate result as in Eqn.  ( 4 7 ) .  

is equivalent to 

with a corresponding result for the other one, so that 
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1 

I Eqn. (50) defines a random interval, by two statistics such 

that the probability that this random interval contains the i 
1 population parameter, OM, is given by the right hand side of the 

equation. By assumption, the probability that 0; is zero is 
I 

negligible. Eqn. (36) is then equal to zero. Eqn. (37) equals 

1 - @(+ It21) 

I 

1 0 

1 

and so on. 

2 7  



7 .  THE SOLUTION FOR ALL VALUES OF 0' 

For the general solution, one needs to replace Eqn. (22) by 

inequalities as functions of 0 that bound 0; as in Eqns. (32a) 

to ( 3 4 ) .  The algebra is best carried out by setting the ine- 

quality sign to an equality sign, squaring an appropriate expres- 

sion, solving the quadratic equation that results for 0 as a 

functibn of DO, a, B ,  y and Itl[ or It2\ and picking the correct 

sign for the solution. The two results are 

0 

0 

b! 

and 

so that the terms in Eqn. ( 3 4 )  become known. Again the random 

values for the bounds for the inequalities are statistics that 

can be computed from the sample value of (3 . 0 

The terms 1 - ItllLa and 1 - It21'a would cause difficulties 

if either one were to become negative. The mathematical model 

for the PDF then fails to be realistic. As discussed above the 

value of a is so small that this does not affect the usefulness 

of the results. 
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For Eqn. (51), if 0' = lt21Y + , ao (0°1t21) 

undefined if uo < 

numerator becomes 

t21y4 . For Eqn. (52) if 

@/2 + I t l p  - lt1I2 B/2  = 0 

is zero and is 

00 = - Itl\? the 

(53) 

0 0  so that aM(a Itll) is undefined for u o <  - /tlly'. Fig. 3 shows 

these points and illustrates the requirement that no value of oOM 
can be negative. 

These results have many applications to the interpretation 

of backscatter estimates from scatterometers, as will be il- 

lustrated by specific examples in following sections. An example 

of their implications is to consider some typical numerical 

values. Suppose that y = 10 and two estimates of 0 have been 
-5 -5 

obtained: one is equal to 10 and the other is equal to -10 . 
From Eqn. (39) for the first value of a', t4 = 0.01, and f o r  the 

second, it equals -0.01. 

-6 0 

For ao equal to lo-', the following probability statements 

concerning random intervals can be made if ltll = It21 = 1 

P(ai 0) = 0.496 (54a) 

(54b) 
0 0 0  P(0  < aM < aM(o , Itll)) = 0.3453 

The first probability statement would need to be interpreted here 

and when first described above quite carefully. This interpreta- 
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tion would be: Given a large number of sample values of 0' equal 

to 16' such that y equaled and ltll equalled 1, drawn from 

populations with unknown values of OM some of which were iden- 

tically zero, then the probability that 0' was drawn from a 

population such that 0; was in fact zero is 0.496. 

0 

the -5 If on the other hand, the sample value of 0' is -10 

probabilities becolue 

(55a) 
0 P(aM 3 0) = 0.5040 

0 0  0 
P(oM (0 I t l / )  < aM) = 0.1587 

where, for known values of a ,  B and y the numerical values of the 

statistics inside the probability statements have changed. It 

would obviously be difficult to distinguish possible values of 

U0 one from the other, if successive sample values for o0 were 

lo-' and -lo-' .  
M 

If, to continue, uo were to equal -1.645*10-3 (the corres- 

ponding positive value would be about -29.8 db), and Itl\ were 

1.645, then the probability that u i  would be greater than zero 

would be 0.05. 

From Eqns. (25) to (31) an average of four values of 0' ef- 

fectively reduces the values of a, B and y by a factor of four 

and the corresponding standard deviations by a factor of 2. The 

vertical line for the example value of 0; would be half as long 
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in Fig. 1, and Region I1 would be half as wide. The random inter- 

I vals obtained above would have their lengths changed. Those cor- 
I 
I responding to Eqn. (34) would be about half as long for the same 

probability on the RHS. For averages of 16, if possible, the in- I 

tervals corresponding to Eqn. 34 would be about one fourth as 

r 

I 
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I 8. EXAMPLES BASED ON A NEW SCATTEROMETER DESIGN 

I 

8.1 Theoretical Considerations. There are two sources of 

variability in the backscatter values that could be obtained by a 

scatterometer. These are (1) the variability in the estimates of 

the received power as a result of the combined effects of self- 

noise in the receiver and Raleigh-fading for the backscattered 

power and ( 2 )  the uncertainties in the calculation of the rest of 

the terms in the radar equation that convert the estimate of the 

backscattered power to the estimate of the normalized backscat- 

tering cross section, 0 . I 0 

The theory for the variability of the estimates of the 

received power is well in hand, butthe calculation of the ef- 

fects of the rest of the terms in the radar equation poses some 

important questions. 

I The radar equation can be simplified for the purposes of 

this analysis to the form given by Eqn. (56) 

oo = PR R 

In Eqn. (56), the random variable, PR, is well understood 

from a probabilistic and statistical point of view. The random 

variable, R, is not. This term, R, depends on the calculation of 

the spacecraft's position, velocity and attitude at each time 

that an estimate of aois obtained. The spacecraft may be a 

little bit ahead, or behind, a little bit to the right, or left, 

and a little bit higher, or lower, than the calculated position 

of its center of mass. It may be traveling a little bit faster 
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or a little bit slower than calculated. Also the calculated 

angular displacements in roll, pitch and yaw may be a little bit 

high or a little bit low. 

All of these uncertainties enter into the calculation of R, 

and, according to present analysis methods, result in additional 

variability in the estimates of u .  For analysis purposes, as- 

sume that (56) can be represented by two parts as in Eqns. (57) 

and (58) . 

0 

PR = PM + tpSD(PM) ( 5 7 )  

In E q n s .  (57) and ( 5 8 ) ,  tP is known to be a normally 

distributed random variable with a zero mean and unit standard 

deviation. The nature of the estimation process for the received 

power assures that each and every value of PR, and hence tP, is 

totally uncorrelated with all other values. It is generally as- 

sumed that tR has this same property in that it would also be a 
normally distributed random variable with a zero mean and unit 

variance. 

However, tR need not necessarily have the property that suc- 

cessive values oft are independent in the probability sense. 

As reviewed by Douglas, et al. (1987) who describe difficulties 

in calculating the orbit of a satellite, the residual errors in 

the calculation of R could be systematic, but unknown, and slowly 

varying along the orbit. obtain 

the measurements to be grouped eventually to form the four 

backscatter values estimated for the 25 by 25 km areas on 

R 

About 2.5 seconds is required to 
eight 
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each side of the subsatellite track. There is one possibility 

that tR may be substantially constant over the time interval from 

T to Tg in Fig. 2 so that the unknown errors may be highly cor- 

related from one estimate to the next. A partial correlation is 

also possible. The present probability model assumes that succes- 

sive values of t are independent. 
R 

1 

Ems. ( 5 6 ) ,  (57) and (58) combine to yield Eqn. ( 5 9 ) ,  

which can be rewritten as Eqn. (60) if the last term is omitted. 

0 0 
U' = a, + t SD(UF) + tRSD(aR) 

P 

From ( 6 0 ) ,  the following can be derived. 

0 e (a0) = OM 

0 2  2 
e(ao - a,) = & ( t  SD(u0) + t ,SD(o i ) )  P P  
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8.2 A noise only model. Table 1 has been summarized for 10 

selected incidence angles about 5' apart across the swath. The 

table contains the values of a ,  8 and y as defined in Section 2.1 

that would be appropriate if R in Eqn. (56) were a constant. 

Other quantities of interest are also tabulated. For example, if 

It I = It 1 I = 1 neglected and for high values of the 2 
backscatter, the random interval defined by Eqn. (50) can be 

found approximately in decibels in terms of the first two columns 

after the tabulated values of a. Receiver noise and Rayleigh 

fading alone make the random interval based on the estimate, Do, 

at most 5 0.25 dB and as small as 2 0.12 dB. In what follows the 

square root of y will also be of interest. The last three 

columns provide information on the values of uo such that the 

asymptotic behavior can be used to sufficient accuracy. 

with B/2 a' 

8.3 Position, velocity and attitude errors. The effects of 

the errors in the calculation of R when combined with the types 

of variability represented by Table 1 are shown in Table 2. If 

al, 8, and Y1 are from Table 1 and a 2 ,  B2 and Y2 are from Table 

2, then the second term in Eqn. (62) would be given by Eqn. (63), 

which follows from the properties of normally distributed random 

variables. 

A comparison of Tables 2 and 1, shows that the largest changes 

are in the values of a2 compared to al. The ratios a2/al for the 

incidence angles in the table are given by the values in paren- 

theses following the incidence angle as: 15.6' (10.83), 

lg.gO(22.88) , 24.7' (22.55), 31.4'(19.42), 35.4O (13.95), 
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40.0'(12.46), 46'(10.26), 50.5'(11.52), 55.7'(9.69) and 

59.1°(7.35). The asymptotic random intervals vary from -0.52 and 

+0.60 dB to -0.62 and +0.73 dB in Table 2. 

If the successive values of tR are independent in the 

probability sense, then the full table extension of Table 2 as 

the values vary slowly along the orbit could be used for all of 

the preceding analysis, and in particular Eqns. (4), (22), (241, 

(27), (31), (34), (50), (51) and (52) would be theoretically cor- 

rect. 

8.4 Time correlated random variables. For a particular se- 

quence of 25 by 25 km areas a particular distance cross track 

along the swath, suppose that successive values of tR at the 

times t l ,  tl + A t  and so on as in, say, (60) are given by 

tR(tl) ,  tR(tl + A t ) ,  tR(tl + 2 A t ) ,  ..... tR(tl + n A t )  

It is possible for the successive values of t R  to have a unit 

variance, zero mean normal PDF for a long enough sample, but the 

successive values can be highly correlated such that 

l and instead 

where P is the correlation coefficient. 

The next simplest model of the error structure for R would 

then be a stationary Gaussian random process similar to the 

linear model for ocean waves sampled as a function of time at a 
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fixed point, but with a longer ( ? ) ,  or different, time scale. 

For the four beams involved, the model might have to be extended 

to a vector Gaussian process. Very little is known about how 

this could be done, butthe off nadir altimeter effects and the 

altimeter attitude data might provide guidance. 

It might be possible to investigate whether or not the er- 

rors in R are time correlated along the orbit once the scat- 

terometer is in orbit if the mesoscale variability in the wind 

vectors for each area sampled is not too great. The small scale 

variability of the wind will be described next. The analysis 

will be completed after this complication is described. 

8.5 Model errors, synoptic scales and mesoscales. The con- 

cept of a model for $ or as an extended concept the model for 
backscatter involving 0, x and 8 in Eqns. (7) and (8), is needed 

to recover vector winds from backscatter data. The area inside 

the 25 by 25 km area defining the array of the sampled 

backscatter values that is actually illuminated by the radar to 

obtain the backscatter estimate is much smaller than 625 k m L ,  and 

the wind over this smaller area has a considerable amount of me- 

soscale variability from one 25 by 25 km area to the next. The 

concept of a synoptic scale perturbed from one area to the next 

by mesoscale wind fluctuations is useful. Although the larger 

ocean gravity waves may not change appreciably, the Bragg scat- 

terers will respond to these fluctuations. These concepts have 

been explored more fully by Pierson (1983a), Pierson, et al. 

(1984) and summarized in Pierson, et al. (1986). Basically on an 

i, j grid of 25 by 25 km areas, the departures from a synoptic 
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scale wind os, 
near an arbitrary origin. 

Xs could be represented by the pattern shown below 

u S + A u o , l ;  xs + A X O , 1  US+AU1, 1 ; XS+AX1, 1 Os+AU2, 1 ; Xs+AX*, 1 

0, + AU 0,o; xs+Axo,o Os+AU1, 0 ; XS+AX1, 0 us+ AU2,0;  X ~ + A X * , ~  

The concurrent variability in the actual wind, the random 

variability of tP and the two possibilities (at least) for the 

variability of tR make it difficult to determine whether or not 

the different values of ao are independent random variables or 

correlated as a function of time and adjacent sampled areas of 

the ocean. 

Errors in the model are, at present, mostly systematic and 

not random. Whatever these errors are, they must be modeled in 

terms of aM, not 0'. Simply increasing VAR( aM ) by changing a , 
and y does not help because this changes the theoretical behavior 

of the radar and not the model. Errors in the theoretical model 

for backscatter from waves need to be treated some other way 

after the gross errors in the model for a; 

0 0 f3 

are removed. 
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8.6 A test for t constant over short orbit segments. 

Statistics can be computed from sample values of 0 that may 

reveal whether or not successive values of 0' are highly cor- 

related for some subset of the sample values. For a given an- 

tenna and row of 25 by 25 km areas parallel to the subsatellite 

track, wind vectors may be slowly varying enough and the me- 

soscale variability may be small enough to verify the assumption 

that the values of tR are highly correlated. The failure of the 

test does not show that the tR are uncorrelated since mesoscale 

effects may mask the hypothesis. The test would then show that 

other sources of variability dominate even if the tR are cor- 

related and that the correlation can be neglected. 

0 
R 

the 

For a sequence of n areas parallel to the subsatellite 

track, with n perhaps as large as 5 or 10, and for the same 

polarization and antenna, the available random variables would be 

0 0 0  0 

On 
al, a*, as, ...... 
Suppose that tR is constant for then samples. Then from 

0 Eqn. (60), the expected value of 0 is given by Eqn. (66). 

0 0 e (ao) = aM + tRSD(oR) 

It follows that if 

n 

1 

-0 1 0 a1 = ; 1 ai 

then 

0 & (5;) = OM + tRSD(ai) 

43 



and that 

-' VAR(~' )  -0 2 - e (a0 - al) - - 
n P 

so that 

has an expected value of VAR( a' ) and is an unbiased 

VAR(0;). This ought to be close to 
P 

2 -0 2 sl* = 1 1  (0 1 + B, 5; + y1 

(70) 

estimate of 

If, on the other hand, t and t are independent for this P R 
sample, then 

n 1 0 

1 
6 O  = - 1 ai 2 n  

is the sample mean such that 

0 e (6;) = OM 

Also 

n 2 2 1 0 -0 

2 n - l l  s = - 1 (ai - a2) 

(73) 

( 7 4 )  

2 is the unbiased sample variance. expected 

value equal to the variance of 0 and is an unbiased estimate of 

VAR(oi )  which ought to be close to 

The quantity S2 has an 
0 

2 -0 2 -0 
s 2 *  = a 2 ( a 2 )  + 8, a2 + Y2 ( 7 5 )  
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I 

I 
I 

1 
I I 

I 

i 
I 

from Eqn. (62). 

The different samples of size n do not contain any informa- 
2 2 2 2 tion on whether either z y ,  S1 and S1*or 6; , S2 and S 2 *  were sam- 

pled, but the statistics could contain this information. Only 

one sample mean is known and only one sample variance is known. 

The sample mean can be substituted into both Eqns. (67) and (71). 

2 2 2 
If S2  and S2* are close together, with perhaps S2 larger 

2 0 than S 2 *  then successive values of 0 are probably independent, 

and Table 2 is appropriate. If SI and S1* are close together and 

if S2* is seven to twenty times larger than Si, then successive 

values of tR are highly correlated. Locally, the sampling 

variability is described by Table 1, but the expected values of 

the estimates do not equal the values for the model and can be 

biased either high or low. 

2 2 

2 

Thus, if the above statistics yield values for estimates of 

the variance perhaps 50% higher (or perhaps two to three times lar- 

ger), but not seven to twenty times larger, than those in Table 1, 

the independence of successive values of tR is questionable. The 

use of Table 2 to recover the winds poses problems because er- 

rors in the recovered winds from the M L E  are systematic locally and 

not independent. This contingency needs to be treated theore- 

tically and modeled. A test of the hypothesis can be made rather 

quickly and the contingent plans implemented if needed. 

the 

It is also possible that improved methods for reducing the ad- 

dit.iona1 sources of variability included in Table 2 may be 
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developed so that the values of a in that table may be reduced con- 

siderably prior to the launch of the spacecraft. All of the results 

presented prior to Part 8 are subject to revision if successive 

values of tR are not independent in the probability sense. 

8 . 7  The Amazon rain forest. The SEASAT-SASS antenna pattern 

was calibrated against homogenious and isotropic backscatter from 

the Amazon rain forest. These values would not vary because of me- 

soscale fluctuations in the wind over the ocean as described in Sec- 

tion 8.5. The test described in Section 8 . 6  can easily be applied 

over fairly long orbit segments so as to be able to determine whe- 

I ther or not the added effects in Table 2, compared with Table 1, 
contribute to the variability of the sample values of the 

ter. 

backscat- 
I 
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9. EXAMPLES BASED ON TABLE 2 FOR RANDOM INTERVALS AND 
RESULTS FOR A CANDIDATE MODEL FUNCTION 

9.1 Assumptions. In this part, it will be assumed, subject 

to revision, that Table 2 represents the parameters, a, B and y, 

for the various tabulated incidence angles. What could happen if 

Table 1 should have been used along with slowly varying values of 

tR will be mentioned at times. 

9.2 Random intervals. Tables 3.1 to 3.10 provide values 

for the end points of the random intervals with various 

probabilities of including the model value, obi, given a sample 

value of 0 . The calculations are based on the ten sets of 

values of a ,  B and y for the ten different incidence angles in 

Table 2. 

0 

0 

The first column is the value of t appropriate to the sample 

value, u . The integral from t to Q, is the probability that 

ob! is zero (it cannot be negative). 

0 

0 

0 The sample value of u is in the second column. The column 

headed by 5% is the lower bound on a range of values for o i  such 

that the value in that column and the value in the 95% column 

provide an interval that has a 90% chance of including the value 
0 of OM. 

The 15.87% and 84.13% columns are for Itll=lt21 = 1. The in- 
tervals defined by these end points have a 68.26% chance of en- 

closing the value of OM. 0 
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I From Table 3.1 for the first row, a few of the statements 

that can be made are: 

(1) If uo = 0.18, the probability that 0; E 0 is 

negligible. 

( 2 )  P(0.1155 < 0: < 0.2713) = 0.90 

(3) P(0.1387 < 0; < 0.2389) = 0.6826 

In contrast, if the sample value is 0.06 (i.e. 0' = 0.06), 
0 the probability that abl could be identically zero 

the tables for the normal P D F .  A l s o  

( 4 )  P(0.0077 < 0; < 0.0576) = 0.90 

and so on. 

If the sample value is 0.012, the probability 

not negligible. A l s o  

0 
( 5 )  P(0  < aM < 0.0705) < 0.90 

and 

( 6 )  

If u = -0.06, none of the intervals exist. 

P(0.0705 < 0: < a) = 0.05 

0 

can be found in 

0 that ab! 0 is 

The probability 
0 that O M =  0 is almost but not quite 1.00 as calculated from t and 

the probability that 0; is greater than zero is less than 0.05. 

In terms of the analysis given in Section 5 . 4 ,  the bottom 

four rows show the values of uo such that, in order, the lower 

bounds on the 90% and 68.26% intervals become zero and the upper 
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TABLE 3.1 S T A T I S T I C S  FOR RANDOM INTERVALS AND MAXIMU# 

a = 0.019125 8 = 0.002517, Y = 0.0009917 
LIKELIHOOD ESTIMATES (TIMES 102) e = 15.6 , 

t SAMPLE 0" 5% 15.87% 84.13% 95% MLE 

5.72 

5.33 

4.95 

4.57 

4.19 

3.81 

3.43 

3.05 

2.67 

2.29 

1.91 

1.52 

1.14 

0.76 

0.38 

0 

-0.38 

-0.76 

-1.14 

-1.53 

18.0 

16.8 

15.6 

14.4 

13.2 

12.0 

10.8 

9.6 

8.4 

7.2 

6.0 

4.8 

3.6 

2.4 

1.2 

0 

-1.2 

-2.4 

-3.6 

-4.8 

11.55 

10.50 

9.44 

8.38 

7.32 

6.25 

5.17 

4.08 

2.98 

1.88 

0.77 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

13.87 

12.77 

11.67 

10.56 

9.46 

8.35 

7.23 

6.11 

4.99 

3.86 

2.72 

1.58 

0.43 

- 
- 
- 
- 
- 
- 
- 
- 

23.09 

21.74 

20.40 

19.05 

17.71 

16.38 

15.05 

13.72 

12.40 

11.08 

9.77 

8.46 

7.16 

5.87 

4.59 

3.31 

2.04 

0.78 

- 
- 
- 

27.13 

25.65 

24.18 

22.71 

21.24 

19.78 

18.33 

16.87 

15.45 

14.02 

12.61 

11.20 

9.80 

8.41 

7.05 

5.69 

4.35 

3.01 

1.05 

0.41 

- 

17.54 

16.36 

15.19 

14.01 

12.83 

11.65 

10.48 

9.30 

8.12 

6.99 

5.76 

4.59 

3.41 

2.23 

1.06 

0 

0 

0 

0 

0 

-1.91 -6.0 0 

1.654 5.18 0 NA NA NA 

1 . 0 0 0  3.14 NA 0 NA NA 

-1.000 -3.14 NA NA 0 NA 

-1.654 -5.18 NA . NA NA 0 

NA is "not applicable" 
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TABLE 3.2 STATISTICS FOR RANDOM INTERVAL AND M A X I T  

a = 0.01648, B = 0.0013575, y = 0.0008225 
LIKELIHOOD ESTIMATES (TIMES 10 9 ) e = 19.9 , 

t SAMPLE 0" 5% 15.87% 84.13% 95% MLE 

6.29 

5.86 

5.44 

5.02 

4.60 

4.18 

3.77 

3.55 

2.93 

2.51 

2.09 

1.67 

1.26 

0.84 

0.42 

0.00 

-0.42 

-0.84 

-1.26 

18.0 

16.8 

15.6 

14.4 

13.2 

12.0 

10.8 

9.6 

8.4 

7.2 

6.0 

4.8 

3.6 

2.4 

1.2 

0 

-1.2 

-2.4 

-3.6 

-1.67 -4.8 

1.654 4.72 0 NA NA NA 

12.22 

11.15 

10.08 

9.00 

7.91 

6.82 

5.72 

4.61 

3.49 

2.37 

1.23 

0.008 

- 
- 
- 
- 
- 
- 
- 
- 

14.32 

13.21 

12.10 

10.98 

9.86 

8.73 

7.60 

6.47 

5.33 

4.19 

3.04 

1.88 

0.71 

- 
- 
- 
- 
- 
- 
- 

22.42 

21.09 

19.76 

18.44 

17.12 

15.81 

14.50 

13.19 

11.89 

10.59 

9.30 

8.02 

6.74 

5.48 

4.21 

2.96 

1.72 

0.48 

- 
- 

25.84 

24.40 

22.96 

21.53 

20.10 

18.67 

17.27 

15.87 

14.48 

13.09 

11.72 

10.35 

9.00 

7.66 

6.34 

5.02 

3.72 

2.44 

1.16 

- 

17.64 

16.46 

15.28 

14.10 

12.92 

11.74 

10.56 

9.38 

8.20 

7.02 

5.84 

4.66 

3.48 

2.29 

1.12 

0 

0 

0 

0 

0 

1.000 2.87 NA 0 NA NA 

-1.000 -2.87 NA NA 0 NA 

-1.654 -4.72 NA NA NA 0 

NA is "not applicablett 
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TABLE 3.3 STATISTICS FOR RANDOM INTERVALS AND MAXIMUM 
LIKELIHOOD ESTIMATES (TIMES 102 ) 8 = 24.7 O, 
a =  0.01729, 6 = 0.0004497, y = 0.00008354 

t SAMPLE 00 5% 15.87% 84.13% 95% MLE 

5.91 5.40 3.58 4.24 6.79 7.87 5.29 

5.51 5.04 3.26 3.91 6.39 7.44 4.93 

5.12 4.68 2.94 3.58 5.99 7.01 4.58 

4.72 4.32 2.62 3.24 5.60 6.59 4.22 

4.33 3.96 2.29 2.91 5.20 6.15 3.87 

3.94 3.60 1.96 2.57 4.80 5.72 3.52 

3.54 3.24 1.63 2.23 4.41 5.29 3.16 

3.15 2.88 1.30 1.89 4.01 4.87 2.81 

2.76 2.52 0.96 1.55 3.63 4.45 2.46 

2.36 2.16 0.63 1.20 3.23 4.03 2.10 

1.97 1.80 0.28 0.86 2.85 3.62 1.75 

1.58 1.44 - 0.51 2.47 3.21 1.39 

1.18 1.08 - 0.16 2.08 2.80 1.04 

0.79 0.72 - - 1.70 2.40 0.69 

0.39 0.36 - - 1.13 1.80 0.33 

0.00 0 - - 0.95 1.61 0 

-0.39 -0.36 - - 0.57 1.21 0 

-0.79 -0.72 - - 0.19 0.83 0 

- 0.25 0 -1.18 -1.08 - - 
- 0.07 0 -1.58 -1.44 - - 

0 -1.97 -1.80 - - - - 
1.654 1.50 0 NA NA NA 

1.000 0.91 NA 0 NA NA 

-1.000 -0.91 NA NA 0 NA 

-1.654 -1.50 NA . NA NA 0 

NA is Itnot applicablet1 
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I TABLE 3.4 STATISTICS FOR RANDOM INTERVALS AND MAXIMUM 
LIKELIHOOD ESTIMATES (TIMES 103) 8 = 3 1 . 4 ~ ~  
c1 = 0.01713 B = 0.0001642, y = 9.405.10-6 

t SAMPLE uo 5% 15.87% 84.13% 95% MLE 

5.87 

5.48 

5.09 

4.70 

4.30 

3.91 

3.52 

3.13 

2.74 

2.35 

1.96 

1.57 

1.17 

0.78 

0.39 

0.00 

-0.39 

-0.78 

-1.17 

18.0 

16.8 

15.6 

14.4 

13.2 

12.0 

10.8 

9.6 

8.4 

7.2 

6.0 

4.8 

3.6 

2.4 

1.2 

0 

- 1.2 
- 2.4 
- 3.6 

11.89 

10.83 

9.75 

8.67 

7.59 

6.50 

5.40 

4.29 

3.17 

2.05 

0.91 

- 
- 
- 
- 
- 
- 
- 
- 
- 

14.11 

13.00 

11.89 

10.77 

9.65 

8.52 

7.40 

6.27 

5.13 

3.99 

2.83 

1.60 

0.52 

- 
- 
- 
- 
- 
- 
- 

22.68 

21.35 

20.02 

18.70 

17.37 

16.06 

14.74 

13.43 

12.13 

10.83 

9.54 

8.25 

6.97 

5.70 

4.44 

3.18 

1.93 

0.69 

- 
- 

26.32 

24.87 

23.43 

21.99 

20.56 

19.14 

17.71 

16.31 

14.91 

13.52 

12.13 

10.77 

9.41 

8.06 

6.73 

5.40 

4.10 

2.80 

1.52 

17.62 

16.44 

15.26 

14.08 

12.90 

11.72 

10.54 

9.36 

8.18 

7.00 

5.87 

4.64 

3.46 

2.28 

1.10 

0 

0 

0 

0 

0 -1.57 - 4.8 0.26 - 

1.654 5.04 0 NA NA NA 

1.000 3.07 NA 0 NA NA 

-1.000 -3.07 NA NA 0 NA 

-1.654 -5.04 NA NA NA 0 

NA is Ifnot applicablell.  
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TABLE 3.5 STATISTICS FOR RANDOM INTERVALS AND MAXIMUM 
LIKELIHOOD ESTIMATES (TIMES 103) 8 = 35.t0, 
a = 0.01775, 6 = 0.00011, Y = 2.478'10- 

t SAMPLEa" 5% 15.87% 84.13% 95% MLE 

7.24 

6.76 

6.27 

5.79 

5.31 

4.83 

4.34 

3.86 

3.38 

2.90 

2.41 

1.93 

1.45 

0.97 

0.48 

0.00 

-0.48 

-0.97 

12.0 

11.2 

10.4 

9.6 

8.8 

8.0 

7.2 

6.4 

5.6 

4.8 

4.0 

3.2 

2.4 

1.6 

0.8 

0 

-0.8 

-1.6 

8.36 

7.66 

6.96 

6.26 

5.55 

4.84 

4.12 

3.40 

2.67 

1.94 

1.20 

0.45 

- 
- 
- 
- 
- 
- 
- 

9.66 

8.93 

8.20 

7.46 

6.73 

5.99 

5.25 

4.50 

3.75 

3.00 

2.24 

1.48 

0.72 

- 
- 
- 
- 
- 
- 

14.88 

13.99 

13.09 

12.19 

11.30 

10.41 

9.53 

8.64 

7.76 

6.88 

6.01 

5.16 

4.28 

3.43 

2.57 

1.73 

0.89 

0.06 

- 

17.17 

16.18 

15.20 

14.22 

13.25 

12.28 

11.32 

10.36 

9.41 

8.46 

7.52 

6.59 

5.67 

4.75 

3.85 

2.96 

2.07 

1.20 

11.74 

10.95 

10.17 

9.38 

8.59 

7.81 

7.02 

6.24 

5.45 

4.66 

3.88 

3.09 

2.30 

1.52 

0.73 

0 

0 

0 

-1.45 -2.4 0.35 0 

1.654 2.73 0 NA NA NA 

1.000 1.66 NA 0 NA NA 

-1.000 -1.66 NA NA 0 NA 

-1.654 -2.73 NA NA NA 0 

NA is Itnot applicablett .  

53 



TABLE 3.6 STATISTICS FOR RANDOM INTERVALS AND MAXIMUM 
LIKELIHOOD ESTIMATES (TIMES $ 0 4 )  e = 4i0, 
a = 0.01841, B = 5.53 X lo-, Y = 5.849*10-7 

t SAMPLE o0 5% 15.87% 84.13% 95% MLE 

6.28 

5.86 

5.44 

5.02 

4.60 

4.18 

3.77 

3.35 

2.93 

2.51 

2.09 

1.67 

1.26 

0.84 

0.42 

0.00 

-0.42 

-0.84 

48.0 

44.8 

41.6 

38.4 

35.2 

32.0 

28.8 

25.6 

22.4 

19.2 

16.0 

12.8 

9.6 

6.4 

3.2 

0 

-3.2 

-6.4 

-9.6 -1.26 _ . .  3.19 0 

1.654 12.58 0 NA NA NA 

1.000 7.65 NA 0 NA NA 

-1.000 -7.65 NA NA 0 NA 

-1.654 -12.58 NA NA NA 0 

NA is Itnot applicable1'.  

31.97 

29.17 

26.36 

23.53 

20.69 

17.83 

14.95 

12.05 

9.13 

6.18 

3.21 

0.21 

- 
- 
- 
- 
- 
- 
- 

37.73 

34.80 

31.86 

28.92 

25.97 

23.00 

20.03 

17.04 

14.04 

11.03 

7.99 

4.95 

1.88 

- 
- 
- 
- 
- 
- 

60.64 

57.05 

53.46 

49.88 

46.32 

42.76 

39.22 

35.68 

32.16 

28.66 

25.17 

21.70 

18.24 

14.81 

11.40 

8.00 

4.64 

1.30 

- 

70.64 

66.70 

62.78 

58.87 

54.98 

51.10 

47.24 

43.41 

39.59 

35.80 

32.04 

28.31 

24.61 

20.94 

17.31 

13.72 

10.17 

6.66 

46.87 

43.73 

40.58 

37.44 

34.30 

31.16 

28.01 

24.87 

21.73 

18.58 

15.44 

12.30 

9.16 

6.02 

2.88 

0 

0 

0 
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TABLE 3.7 STATISTICS FOR RANDOM INTERVALS AND MAXIMUM 
LIKELIHOOD ESTIMATES (TIMES lo3) 8 = 46", -6 
cx = 0.019375, B = 0.000043, Y = 2.688 X 10 

t SAMPLE 00 5% 15.87% 84.13% 95% MLE 

5.79 

4.82 

3.86 

2.89 

1.93 

1.157 

0.965 

0 

-0.965 

3.0 

2.5 

2.0 

1.5 

1.0 

0.6 

0.5 

0 

-0.5 

1.93 

1.49 

1.05 

0.597 

0.137 

- 
- 
- 
- 

2.31 

1.86 

1.39 

0.929 

0.459 

0.078 

- 
- 
- 

3.85 

3.29 

2.73 

2.17 

1.62 

1.19 

1.08 

0.546 

0.002 

4.53 

3.91 

3.30 

2.69 

2.10 

1.63 

1.51 

0.940 

0.383 

2.92 

2.43 

1.94 

1.45 

0.960 

0.568 

0.4695 

0 

0 

- 0.057 0 -1.544 -0.8 - - I 
1.645 0.853 0 NA NA NA 

1.000 0.518 NA 0 NA NA 

-1.000 -0.518 NA NA 0 NA 

-1.645 -0.853 NA NA NA 0 

, NA is "not applicable". 
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TABLE 3.8 STATISTICS FOR RANDOM INTERVALS AND MAXIMUM 
LIKELIHOOD ESTIMATES (TIMES 1 0 3 )  e = 5o.so, -7  
a = 0,019917, 6 = 0.000031, Y = 1.539 X 10 

t SAMPLE u0 5% 15.87% 84.13% 95% MLE 

6.12 2.4 1.57 1.87 3.06 3.59 2.34 

5.10 2.0 1.23 1.50 2.61 3.09 1.95 

4.08 1.6 0.872 1.14 2.16 2.60 1.55 

2 . 1 1  1 .16  3.06 1.2 0.512 0.765 1.72 

2.04 0.8 0.144 0.389 1.28 1.64 0.769 

1.02 0.4 - 0.007 0.840 1.17 0.377 

0 0 - - 0.412 0.709 0 

-1.02 -0.4 - - - 0.265 0 

1.645 0.645 0 NA NA NA 

1.000 0.392 NA 0 NA NA 

-1.000 -0.392 NA NA 0 NA 

-1.645 -0.645 NA NA NA 0 

NA is "not applicableII. 

56 



TABLE 3.9 STATISTICS FOR RANDOM INTERVALS AND MAXIMUM 
LIKELIHOOD ESTIMATES (TIMES 103) e = 55.70, -7  
c1 = 0.021640 6 = 0.000037595, y = 1.709 X 10 

t SAMPLE go 5% 15.87% 84.13% 95% MLE 

5.81 2.4 1.53 1.84 3.10 3.68 2.33 

4.84 2.0 1.18 1.48 2.65 3.17 1.94 

3.87 1.6 0.833 1.11 2.20 2.67 1.55 

2.90 1.2 0.476 0.741 1.75 2.18 1.16 

1.94 0.8 0.111 0.367 1.31 1.70 0.765 

1.161 0.48 - 0.064 0.956 1.31 0.452 

0.967 0.4 - - 0.869 1.22 0.373 

0 0 - - 0.438 0.757 0 

-0.967 -0.4 - - 0.0140 0.307 0 

-1.549 -0.64 - - - 0.0434 0 

1.645 0.680 0 NA NA NA 

1.000 0.413 NA 0 NA NA 

-1.000 -0.413 NA NA 0 NA 

-1.645 -0.680 NA NA NA 0 

NA is Itnot applicable1I. 
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TABLE 3.10 S T A T I S T I C S  FOR RANDOM INTERVALS AND MAXIMUM , LIKELIHOOD ESTIMATES (TIMES 103) e = 59.10, -7  
l a = 0.02376, 6 = 0.00005929, Y = 3.055 X 10 

t SAMPLE oo 5% 15.87% 84.13% 95% MLE 

5.43 3 1.84 2.25 3.95 4.74 2.90 

4.52 2.5 1.41 1.80 3.38 4.10 2.41 

3.62 2.0 0.98 1.35 2.81 3.47 1.93 

2.71 1.5 0.535 0.886 2.25 2.84 1.44 

1.81 1.0 0.083 0.421 1.69 2.23 0.948 

1.085 0.6 - 0.045 1.25 1.74 0.557 

0.905 0.5 - - 1.14 1.62 0.460 

0 0 - 0.59 1.02 0 

- 0.056 0.456 0 

- - 0.010 0 

- 
-0.905 -0.5 - 
-1.629 -0.9 - 
1.645 0.909 0 NA NA NA 

1.000 0.553 NA 0 NA NA 

-1.000 -0.553 NA NA 0 NA 

-1.645 -0.909 NA NA NA 0 
I 

NA is Itnot applicablett.  
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bounds on the 68.26% and 90% intervals become zero. All of the 

probability statements in Section 5.4 can be made for the various 

values of the random variable, u , based on statistics calculated 

from this random variable as derived in Section 7. 

0 

The last column in each table provides the values of the max- 

imum likelihood estimates for each sample value of u . Each 

estimate is slightly less than the value of 0 . If the estimate, 

Go, is negative, the maximum likelihood estimate ofUbl must be 

zero. 

0 

0 

0 

There is a theoretical inconsistency in the definition of 

the maximum likelihood estimate as in Eqn. (24). If there is a 

finite probability that u i  0, since the PDF is otherwise con- 

tinuous, the M L E  strictly defined ought to be zero. In another 

sense the PDF is maximized for two different value of 0 and the 

realistic choice is the one tabulated. 

0 

Figs. 4a to 4g are graphs of these values for incidence 

angles of 15.6', 19.9', 24.7', 31.4', 41.0°, 50.5' and 59.1'. 

The graphs are entered with the sample value of CJ on the ver- 

tical scale and the curves then define the various random inter- 

vals with the indicated probabilities of enclosing the value of 

0; as given on the horizontal axis. Supplementary values in dB 

are also shown for each graph. 

0 

For Fig. 4a, the sample values range from 0.20 (-6.99 dB to) 

zero (- aD dB) to -0.10 (dB not defined). If 0' has the value 

given by 1.654Yk, the 90% random interval has a range from - O3 to 

somewhat greater than -10 dB. Trying to understand backscatter 
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3.81 - 

(-10.0) (-8.24) (-6.99) (-5.231 dB 
e = 15.6O 

a=  0.019125, B =0.002517 I y = 0.0009917 
asymptotic values t = 7.23 I Kp= 0.138 
dB -0 .56 ,  +0.65 

Fig. 4a Random Intervals with Probabilities of 68.26% and 90% of 
Enclosing the Model Value fo r  08 15.6' and the Values of 
a,  B and Y in Table 2. Linear scales (Values in dB are 
Shown in Parentheses). 

4.18 - 

e = 19.90 
a = 0.01648, @=0.0013575, y =0.0008225 
asymptotic values t = 7.79 
dB -0.52, +0.60 

Kp= 0.128 

dB 

Fig. 4b Same as Fig. 4a Except for 8 = 19.9- 
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t dB(-l2.23)[ SAMPLE . . - . . . - . \ . A m  / /  ' / /  0.06 U o  

VALUE 5.91 - 
0.05 - 

(-13.0) 
4.92 - 

0.04 - 
(-13.08) 3.99 - 

EXPECTED VALUE 

0.02 0.03 0.04 0.05 006 007 0.08 0.09 0' 
(-16.99) (-15.23) (-13.98)(-13.01) (12.22) (-I 1.551 (-10.971 (-10.46)dB 

omO.01729, 8.4.497; IO-', r-8.354;10" 

dB -0 .54 ,  +0.61 

e 24.7. 

-I .658 arymplolic values t = 7.61 Kp.0.13 

-0.02 

Fig. 4c Same as Fig. 4a Except for 8 = 24.7'. 

4.89 - - 
3.91 - 

1.658 - 0.005 

(-15.3) dB 

e = 31.4. 
- I  .658 c -0.005 

0=0.01713, 1.642 x IO-', y 9.405 X W8 
osymptoiic values 187.64 Kp'0.13 
dB -0.53, +0.61 

-0.010 - 
Fig. 4d Same as Fig. 4a Except for  e = 31.40. 
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Fig. 4e Same as Fig. 4a Except for e = 41.0' 

0.00323r urn 
SAMPLE 

0 003 - VALUE 
68(-25.2) 

t - 
6.12 - 
6.10 - 0.002 - 

EXPECTED VAWE 

orympfotic volucr t. 7.09 Kp*0.14 
dB -0.57, +0.66 -0.001 = 

Fig. If Same as Fig. 4a Except for 8 = 5 0 . 5 ' .  
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9 
5.43 - 0.003- Q' 

dB(-25.3) SAMPLE 

- VALUE 

( - 27.0 I (-25.2) (-24.0) dB 
8.59.1' 

0.0.02376. B .  5.925 I IO-', y 
asymptotic volurs 1.6.49 Kp*0.15 
dB -.62, +0.73 

3.055 I IO" 

Fig. 4g Same as Fig. 4a Except for 8 = 59.1'. 
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values in terms of decibels or logarithms of oo and oo can be dif- 

ficult at times. 
M 

These seven graphs at first glance appear to be very much 

alike, but closer inspection shows them to be quite different. 

The ranges of oo and ao are different. The intercepts with the 

a axis, which depend on <5 are different and the lengths of the 

random intervals increase at different rates depending on the 

size of a. 

M 
0 

Since y decreases by only 1.5 to 2% when Table 1 is compared 

to Table 2, had Table 1 been used to construct the graphs, the 

four curves would have had slopes closer to unity and the lengths 

of the random intervals would not increase as rapidly as they do 

in these figures. The variability introduced by the uncertainty 

in the quantity, R, is thus important for high values of oo(and 

in a relative sense, as determined especially by a ,  and by 0 
'M 1, 
B and Y. 

9.3 Interpretation in terms of a candidate model. For il- 

lustrative purposes, the candidate model will be the one given by 

Donelan and Pierson (1987). The curves for the model are from 

Fig. 7 of this reference. Figs. 5a and 5b are for a water tem- 

perature of O°C and incidence angles respectively of 20°, 40" and 

60' and 30' and 50'. Figs. 5c and 5d are for a water temperature 

of 30 and the same incidence angles as in the previous two 

figures. The slight differences in incidence angle between Table 

2 and these values have been neglected. All four of these 

figures are based on the sampling variability of one single 25 by 

25 km area for vertical polarization. 

0 
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Figs. 6a to 6d show the result of averaging the uo values 

from four 25 by 25 km areas in a row parallel to the subsatellite 

track. The four incidence angles and the four values of a ,  B and 

Y would be averaged also. The values of a ,  6 and Y have been 

divided by four based on (27). 

For purposes of discussion, it will be assumed that the 

model is correct. The results are for either one 25 by 25 km area 

at the indicated incidence angle and temperature as in Figs. 5a 

to 5d or for a row of four areas parallel to the subsatellite 

track as in Figs. 6a to 6d. The values of a, B and y from Table 2 

have been used for the incidence angles closest to those in these 

figures. 

For each incidence angle in Figs. 5a to 5d there are five 

curves. The center curve is for the model, and it is surrounded 

by the four curves labled 5%, 15.83%, 84.13% and 95%. The 

backscatter estimate is assumed to be for an upwind look. The con- 

clusions of Donelan and Pierson that the backscatter can become 

undetectable before the wind becomes zero, that there is no power 

law and that backscatter may saturate and then decrease for high 

enough winds are illustrated by this set of four figures. 

The interpretation of each one of the eight figures depends 

on the meaning of the vertical axis. If uo for upwind repre- 

sents the model value, then entering with the wind speed on the 

horizontal axis provides the model value for OM on the vertical 

axis. Eqn. (12) can then be used to calculate the scatter of the 

random variable uo about the value of 0: and graph the four 

curves with the assigned probabilities for Figs. 5a to 5d. Thus 

w (dB) 

0 
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I for Fig. 5a if the wind is, say, 10 m/s for an incidence angle of 

40°, the random variable, 0 will be between about -14 dB and -17 

dB 90% of the time. For Figs. 6a to 6d, Eqn. (27) yields a 

reduced variance and standard deviztion, and this new value is 

used in (12) to calculate the 5% and 95% curves. At 10 m / s  for, 

example, in Fig. 8a at a 40' incidence angle, the random variable 

0 

I 

I will be within a range from about -15.4 dB to about -16.8 dB 90% 
of the time. 

For all eight figures for low enough wind speeds, there is 

no backscatter predicted by the model above -47.5 dB. In the 

model being used as an example,the prediction is that there is no 

backscatter from the waves for winds below a certain water tem- 

perature dependent wind speed. Below this threshold wind speed 

the model value for oM is zero. In Figs. 5a to 5d, the 5% and 0 
1-1 

% and y% 15.87% curves are drawn for 1 m/s at the values 1.645Y 

in dB. In Figs. 6a to 6d, the 5% curve is at 1.645 (y/4 )4 and is 

thus 3 dB lower for low winds than the corresponding curve in 

Figs. 5a to 5d. 

The 84.13% and 95% curves in the various Figs. 5a to 5d go 

to minus infinity dB at those points on the i, axis in the ap- 

propriate Figure from Figs. 4a to 4g where these curves intersect 

the o: axis for one 25 by 25 km area. For low winds with uo in 
antilog form, the 90% range of values of uo  would be from the ap- 

propriate antilog in the figure as an upper bound to its negative 

value as a lower bound. 

~ 

The lower left region for each incidence angle has the 

property that positive sample values of the backscatter from ac- 
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tual data plotted in dB against meteorologically obtained winds 

would scatter all over the region. This feature of actual data 

is well illustrated in Schroeder, et al. (1982). Negative values 

were discarded. 

For the range of wind speeds that were used for the study of 

the SEASAT SASS data, it would be possible to draw a number of 

different power laws within the 5% to 95% curves for Figs. 5a to 

5d. Graphs such as these figures about model lines as power laws 

would still form the same patterns for the low wind, low oo 

areas, and thus light winds would still be uncertain, but well 

within present design requirements, except, perhap, for cold 

water. 

For one 25 by 25 km area (1 cell), Figs. 5a to 5d show that 

if the incidence angle and water temperature are known, 90% of 

the sample values of o will occur somewhere in the region below 

the 5% curve and above, or to the left, of the 95% curve. Were 

both the value of oo and the wind speed known the plotted point 

(u, oo ) would usually not fall on the model curve for u i .  

0 

For four cells in a row parallel to the subsatellite track, 

the advantage of an average (if the wind does not change too 

much) is evident in Figs. 6a to 6d. Ninety percent of the points 

(6, 6' ) scatter in a much narrower range about the model curve 

and the area in the lower left for each incidence angle is made 

smaller. 

Figures similar to these eight figures could also have been 

subsatel- prepared for averages of two 0' values parallel to the 

71 



lite track. The values of a, f3 and y would be reduced by a factor 

of two. The asymptotic values in Table 2 would all be reduced. 

The value of Y would also be reduced. As an example, for, say a 

35.4' incidence angle, instead of -0 .54 and +0.62 dB, the asymp- 

totic values would be -0.39 and +0.43 and in dB would be -29.3 

instead of -27.8, dB. 

?5 

Each of these figures for a particular incidence angle could 
0 0 be extended to a three variable plot of aM + I t2/SD(oi), aM and 

O~-lt,lsD(~~) versus 6 and X. For a fixed c, the resulting sur- 

face for aM would vary as sketched in Figs. 5 and 6 and the upper 

and lower ranges for the scatter in uo would follow the undula- 

tions of the surface. 

0 

If the vertical scale on these eight figures represents the 

sample value, either oo or zo, there is the temptation to enter 

one of these figures, with the sample value, find the values for 

the 5% and 95% curves, for example, and the corresponding wind 

speeds and conclude that, if looking upwind, there is a 90% 

chance that the wind speed is between these two values. As a 

first approximation, this proceedure yields a range of wind 

speeds that is not quite correct because the slopes of the curves 

are continuously changing with increasing wind speed. 

Figs. 7a to 7d illustrate a correct way to interpret these 

figures given a sample value of either oo or 6'. Since the in- 

cidence angle is known, the values of a, f3 and y are known. The 

random interval with, say, a 90% chance of enclosing the value, 

can be computed, and the values for the end points will inter- 

sect the curve for OM in the various ways sketched in the 

0 a M 
0 
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5 O/O 

95% 
U0 

a. 
m I 

LOG,, 

U0 

u; + C .  
I 

LOG ,, D 

b. 
1 

LOG,, 

/ 
d.  

Fig.  7a) An Example of t h e  U s e  of a 90% Random I n t e r v a l  for a 
P o r t i o n  of one of t h e  Sets of Curves i n  E i t h e r  Fig.  5 
or 6 .  N o t  t o  Sca le ;  

b) The U s e  of a 90% Random I n t e r v a l  if t h e  Model Values 
S a t u r a t e  and Then Decrease; 

c) The U s e  of a 90% Random I n t e r v a l  Near t h e  R o l l - O v e r  
P o r t i o n  of a Model, t h e  5% and 95% Curves Have N o  
Meaning; 

d) A P o s s i b l e  90% Random I n t e r v a l  Near t h e  Maximum of t h e  
Roll-Over for a Model, t h e  5% and 95% Curves Have N o  
Meaning. 
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I 
I figures, if the lower bound lies above the 5% curve for the 

chosen incidence angle and sample value. 

Fig. 7a illustrates the condition that the sample value is 

low enough so that the possible effect of saturation and roll- 

over for the model need not be considered. The upper and lower 

bounds on the random interval with a 90% chance of containing the 

value, a M ,  intersect the model curve at two points and the pos- 

sible values of aM, 90% of the time, will be on the heavy portion 

of the curve shown in Fig. 7a. Compared with the points where 

the line for oo intersects the 5% and 95% curves, the bounds on 

the range of wind speeds are broader. 

0 

0 

Should the effect of roll-over be even more pronounced than 

modeled in Figs. 5 and 6, three possibilities are shown in Figs. 

7b, 7c and 7d. For Fig. 7b, there are two possible ranges of 

values for aM and two possible ranges of wind speed. For Fig. 

7c, a very broad range of wind speeds is possible near the max- 

imum of the model curve. 

0 

Fig. 7d is an interesting result. The sample value can be 

higher than the model value such that only the lower bound inter- 

sects the aM curve. If the model is correct, the range of wind 0 

I speeds can be much smaller compared with Fig. 7c. 

The lower left corner for each incidence angle in Figs. 5 

and 6, is difficult to interpret for low winds and low 

backscatter estimates because of the distortion introduced by the 

logarithmic scales. Figs. 8a to 8d show how the sample values 

can be used for linear scales. For Figs. 8a to 8d, the main part 
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of the figure is the same. the 

5% and 95% bounds are sketched, but would need to be calculated 

carefully. Only the values of oo and the lines for the end points 

of the random interval with, say, a probability of 90% of en- 

closing the value, OM, change. 

The curves for oo equal to 0; and 

0 

For the model being used for an example, the value of 0: 

goes to zero at some water temperature dependent wind speed, de- 

signated by UT. For wind speeds less than UT, since there is no 

backscatter from the waves, the random variability is determined 

solely by the value of y in Table 2. Ninety percent of the sample 

values will scatter somewhere in the rectangular area bounded by 

0 < 6 < cT and + 1.645y5 and - 1.645$ if 6 is less than UT. 
0 For Fig. 8a, the sample value, 0 , lies just above this rec- 

tangular area, but the lower bound is within this area. Never- 

theless, the values for the upper and lower bounds on the random 

interval intersect the curve for 0: at two points corresponding 

to speeds greater than UT. The range of wind speed for a 90% in- 
terval would be quite small. 

For Fig. 8b, the sample value is below the 5% line, the 

lower bound for 0; is zero and the upper bound for OM exists. 

The 90% range on 

0 

is from zero to this upper bound. 

In Fig. 8c, the sample value is zero. An upper bound for 0; 

The range of wind speeds is from zero to the speed deter- exists. 

mined by the upper bound. 

In Fig. 8d, the sample value is negative. The upper bound 

still exists and the wind speed range is from zero to this upper 
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I- 
I ue 

0. 

0 

Fig. 8a) 

C. 

b. - 
UT 

0 

- 
U t  d. 

The U s e  of t h e  902 Random I n t e r v a l  With Linear Sca le s  
for Values Near t h e  Water Temperature Dependent Thresh- 
o l d  Wind f o r  a Sample Value Greater  Than t h e  52 Curve: 
Same as a Except f o r  a Pos i t i ve  Sample Value Below t h e  
5% Curve: 
Same a s  a Except for a Sample Value of Zero. 
Poin ts  Marked A and B Correspond t o  t h e  Intercegts 
of t h e  Lower and Upper Bounds with t h e  0' andaM 
Axes of Fig. 4: 
Same as  a Except for a Negative Sam l e  Value. 
For b, c and d, t h e  I n t e r v a l  f o r  u is From Zero to 
t h e  Upper Bound and t h e  Probabi l i t f  is 959.  

The 

8 
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bound. 

9.4 The effect of constant orbit errors for fairly lonq 

times. If the statistical test given in Part 8.6 shows that the 

values of of 

a sampled area of the ocean, Figs. 5 and 6 would not be ap- 

plicable. There would be a curve on each of these figures for 

each incidence angle somewhat above or somewhat below the curve 

tRare sensibly constant over a fairly large portion 

for aM 0 (perhaps similar to a curve for aM 0 for a slightly dif- 

ferent incidence angle) that would correspond to Eqn. (75). The 

sample values would scatter about this curve with standard devia- 

tions calculated from Table 1 for the area of the ocean being sam- 

pled. The values of tR need not be the same for the eight dif- 

ferent antennas on the spacecraft. The analysis carried out 

above could perhaps be modified to account for this effect. The 

overall outcome for this possibility would be that wind 

recoveries could be systematically biased from one area of the 

ocean to another, especially for moderate and high winds. 
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I 

10.  MAXIMUM L I K E L I H O O D  E S T I M A T E S  FOR AND X . 
~ 10.1 Wind speed and direction conventions. Let the 45' an- 
i 
, tenna in Fig. 2 for vertical polarization be pointing at an angle 

of xo clockwise relative to north. The values of x in (7) and 
( 8 )  are to be added toX, to obtain the wind direction relative 

to north. The result is the direction from which the wind is 

blowing in degrees measured clockwise from north. For the two 

beams if X 

is known. 

at 45', in Fig. 2 the wind direction is simply Xo + X 

When the beam at 115O to the subsatellite track samples the 

2 5  by 25 km area a few minutes later, if the wind direction rela- 

tive to the 4 5 '  beam was 0' , then the wind direction relative to 

the 115' beam would be -70 or 290'. Similarly, for the 135' 

beam, the direction relative to this beam would be -90 . It is 

important that these sign conventions be correctly accounted for 

I 0 

0 

in the interpretation of the data. A transformation of variables 

to all directions to the 45 '  beam is accomplished by using 

X -70' and X-90' as the case may be in (7) or ( 8 ) .  

refer 

10.2 Theories and models. There have been numerous efforts 

to apply electromagnetic theory combined with various properties 

of the waves on the ocean to the prediction of the backscatter 

that would be estimated by a scatterometer, or any other properly 

designed and calibrated radar. The problem is very complex since 

there are many physical processes involved, some of which may not 

even have been considered. 
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So as to avoid still more complicated notation, subscripts 

will be added to (7) and (8) to distinguish among the four dif- 

ferent measurements. A theory, or a model, essentially attempts 

to predict the quantity 0: as a function of fi , X and 8 as defined 
in Section 2.1. 

To determine the wind speed and direction, the information 

available for a 25 by 25 km area can be summarized as follows: 

0 0 is the estimate for vertical polarization from the 45 w1 
forward beam with e l ,  a l l  B, and y1 known and a predicted ex- 

0 

pected value from the theory, or model, given by avv(fi, 0 X, 8,) 

which should equal the expected value of this estimate. 

0 
oW2 is the estimate for horizontal polarization from the 

45' forward beam with e2, a2 , B2 and y2 known and a predicted 

expected value from the theory, or model, given by o,(fi, x, 8,) 

which should equal the expected value of this estimate. 

0 

O0 is the estimate for horizontal polarization from the 

B and y known and a predicted ex- 115' aft beam with e3 , a 3 ,  

pected value from the theory, or model, given by 

ok(fi, x - 70°, e3) which should equal the expected value of this 

"3 

3 

estimate. 

oo is the estimate for vertical polarization from the 135 0 vv4 
aft beam with e 4 ,  a4, 8, and Y4 known and a predicted expected 

value from the theory, or model, given by 0 

should equal the expected value of this estimate. 

0 ( f i ,  x-90°, 0,) which 
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Each of the four expected values for the model backscatter 

is different because for the same wind speed, the model varies as 

a function of 8 and x, for the same x, the model varies as a func- 
tion of wind speed and 8 and for the same 8 the model varies as a 

function of wind speed and X. (There may be other physical quan- 

tities involved whose effects have already been accounted for.) 

Since however 0 is known, a known value of X will determine a 

unique wind speed from the model, and a known value of fi will de- 

termine four, or fewer, unique values of the wind direction from 

the model even for just one of the estimates. 

10.3 Maximum likelihood estimates of u and X . Since the 

expected values and variances of the four different estimate of 

the backscatter are all different, the four different estimates, 

U and U W 4  are each a sample of size one from 

populations defined by ( 4 )  such that the expected values and 

variances are all different. 

0 0 0 0 

W2' "3 U a V V l  ' 

The joint probability density function for the four sample 

values is the product of four probability density functions 

similar to ( 4 )  but with different expected values and variances. 

These depend on different known values for 0 ,  a ,  B and Y as in 

Eqn. (76) where the expected values and variances are now 

predicted by the theory, or model. The four sample values are 

independent in the 

U0 
0 0 

f(aW1' '"2' "2' 

probability 

0 0 
"3' %v4) = a 

sense. 
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Since the expected values for the four backscatter estimates 

are now given by a model, the maximum likelihood estimates of fi 
and X can be found by maximizing the right hand side of Eqn. (76) 

by varying 6 and x because U;vl, U0 HH2 , U0 HH3 and are the 

known random variables. The steps are similar to those for Eqn. 

(24) except that the model, or theory, has imposed a further re- 

striction on the expected values and variances, or standard 

deviations, that can be used to maximize the probability. 

The result is given by Eqn. (77) as 6 and X are varied. 
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The one half in Eqn. (24) has been omitted above because it is 

irrelevant. It could also have been omitted in Eqn. (24). 

Eqn. (77) can have more than one local maximum. A computer 

search for these maxima can find them quickly. The power law as- 

sumption that was used for the model for backscatter during the 

SEASAT-SASS program and the use of only two backscatter values 

most of the time, such as awl and Ow4 with the other terms 

omitted in (77), yields four maxima for many sample values corres- 

ponding to four different wind vectors such as i1 , 5 ;  fi2, x2 ; 
Xj with wind vectors, one per quadrant, rela- 

t i v e  to xo . The subject  is discussed in considerable detail in 

Pierson (1983b). The design in Figs. 1 and 2 is a simpler one 

than the one analysed by Pierson and Salfi (1982) when the NOSS 

(National Oceanographic Satellite System) was under con- 

sideration. It is not essential to know the inverse of, say, 

0 0 

- 
and c4, U3; x3 

0 
= a (0, X, 6) 0 

w vv 0 

in terms of 

analytically in order to determine the maximum likelihood 

estimates of 5 and X. 

The maximum of the local maxima for Eqn. ( 7 7 )  may provide a 

unique wind vector most of the time. The beam at llg for the 

example chosen above will almost always eliminate two of the four 

"XII type SASS solution. Differences betweeen horizontally 
I 

I polarized backscatter and vertically polarized backscatter could 
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I 

I 

I 

eliminate one of the remaining two. I 

It is also possible to extend these results to, say, four 25 

by 25 km areas that form a 50 by 50 km area. Eqn. (77) would 

then contain four times as many terms, one for each 25 by 25 km 

area. Averaging, as described above, could help reduce the com- 

putational load. 

I 

I 

83 



, 
11 SYSTEM AND MODEL VALIDATION 

11.1 Comparison with conventional wind measurements. Once 

the MLE has obtained values of fj  and x, the resulting wind vector 

can be compared with a wind measured by conventional means in 

terms of an effective neutral wind computed from the conventional 

measurement for an assigned height, say 19.5 or 20 m, and the 

from a boundary layer model for the same height. The usual 

procedure is to make scatter plots of the two different speeds 

and the two different directions. It was difficult to obtain com- 

parison data f o r  high winds for the SEASAT-SASS program. Also 

certain kinds of systematic errors are not immediately obvious in 

such analyses. 

The system and model validation for some future scat- 

terometer may be easier than it was for the SEASAT-SASS because 

of the expanded network of deep ocean data buoys deployed by the 

National Data Buoy Center. It is planned to have these data 

buoys obtain five consecutive 10 min wind averages followed by an 

8 min average to allow for data transmission each hour. Scat- 

terometer data can be co-located with a data buoy in both time 

and space, and the data buoy winds can be averaged for as long a 

time as appropriate to obtain a more representative wind, if 

needed. Gilhousen (1986) has reported on the present accuracy of 

wind measurements by the National Data Buoys. 
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There are plans to try to modify 18 National Data Buoys 

during the next few years so as to accomplish this change (Per- 

sonal communication, J. Wilkerson 1987). With two 600 km wide 

swaths perhaps as many as 80% of the buoys will be in the swath 

twice each day so that in about one year there will be over 9000 

data buoy reports to be compared with SCAT recoveries. The 

various incidence angles will range over about 25' so that 360 

comparisons per incidence angle should be possible. 

Nevertheless, scatter plots of fi(SCAT) versus u(BU0Y) and 

X(SCAT) versus X(BU0Y) will produce points that do not lie on the 

line of perfect fit. The reasons for this are many such as: 

(1) The model, or theory, is wrong. 

( 2 )  The values of oo are estimates and do not equal the 

expected value predicted by a correct model. 

(3) The conventional measurements have systematic and 

sampling variability I1errorstt. 

For the final validation of any model, it is essential to be 

able to compare the winds recovered from the backscatter 

estimates with the winds measured by a conventional system. The 

sources of ttbiaslt and errors must be identified, and the effects 

of sampling variability for both the scatterometer winds and the 

conventional winds must be accounted for separately. 

The maximum likelihood estimates of 0 and X when compared 

with the 6 and Xobtained from a data buoy provide not only these 
comparisons but also ways to compare the backscatter estimates 

from the scatterometer with the model backscatter values 
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recovered from the maximum likelihood estimate and the 

backscatter values that would be computed from the model from the 

data buoy winds with due consideration of the and sam- 

pling variability of the data buoy winds. 

For a given 25 by 25 km area that contains a data buoy, and 

for other areas that surround it, the available data (with the 

incidence angle known) consist of the following: 
~ 

'B' 'B - 
U ,  S from 

the model 

direction 

from the buoy. 

the maximum likelihood estimate. 
0 0 0 am(Gg' XB>, Ow(%, XB> (Jw(cB, xg)  computed from 

and the buoy wind for the appropriate wind 

relative to each beam. 
0 -  0 0 0 aLv(U, u,(fi, XI, O V v ( f i ,  X) from the wind speed 

and direction recovered from the maximum likelihood 

estimate. 

O"(fi, X I ,  

0 0 0 0 
'W1' '"2' '"3' VV4 u the random variables obtained by the 

scatterometer for the area. 

To avoid complicated subscripts, the values are ordered in 

the same sense as the first four terms in Eqn. (77). The data ' 

for a large number of data buoy reports can be stratified ac- 

cording to CB and 0 for comparison purposes as the data set in- 

creases. Other buoy data such as wave spectral data, air tempera- 

ture and water temperature will also be needed. 

In general, nB, XB will not agree exactly with 0, X from the 

maximum likelihood estimate, nor will the triplets of backscatter I 
I 0 values for a given scatterometer beam such as 

O w ( 0 ,  x> and awl agree with each other. 

u w(UB, xB), 
0 
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The ability to construct a random interval from the value of 

awl (and all other estimates) that contains the expected value 

of the backscatter with a known probability provides a new way to 

study the data set. If oh(flB, xB) and O w ( n ,  XI do not lie 

in this random interval an appropriate fraction of the time, say, 

0.6826, if Itl/ = l tz l  = 1 is used, with due consideration of buoy 

contributions, then the model is not predicting the expected 

value of the backscatter and needs to be improved. 

0 

0 

Suppose, for example, that about 100 sets of data for re- 

ported buoy winds are collected. These would be 200 vertically 

polarized and 200 horizontally polarized sets of data for com- 

parison. The binomial distribution would be applicable. For two 

standard deviations, there ought to be somewhere between 124 and 

150 values from the model as calculated from uB and X B  and, per- 

haps, from the MLE values 6 and X that fall within the ap- 

propriate random intervals. 

If much fewer than 124 successes occur, the result is strong 

evidence that the model has not correctly treated all of the 

various properties of the waves that produce backscatter and ac- 

counted for those effects that cause the backscatter to vary that 

are not directly related to the local wind speed and direction. 

If the number of successes is very much over 150, say, 175 

to 200, so that the random interval nearly always encloses the 

model values computed from fiB and XB , then the random variation 

of the estimates of the backscatter is so great that there may be 

no skill in the recoveries of the winds from the backscatter 

data. The requirements for 2 2 m/s or 10% for speed and corres- 
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ponding direction requirements will then have to be checked 

carefully. 

11 .2  Comparisons of maximum likelihood estimates when con- 

ventional data are unavailable. Woiceshyn, et al. ( 1 9 8 6 )  and 

Woiceshyn, et al. ( 1 9 8 7 )  have uncovered many systematic sources 

of error in the wind recoveries from the SASS-1-SOS model and 

wind recovery algorithm simply from the study of the SASS wind 

data alone. Some way to compare various theoretical backscatter 

models without conventional wind data so that the best one could 

be further improved would be useful. 

Difficulties with the SASS-1-SOS. wind recovery algorithm 

that were revealed by the study of Mode 4 data consisted of (1) 

systematic differences between the values of fi for vertical 

polarization and horizontal polarization for high winds with the 

horizontally polarized wind speeds much higher (as much as 9 m/s) 

than the vertically polarized wind speeds and ( 2 )  systematic pat- 

terns in the wind direction recoveries such that for some wind 

speeds, wind directions for X(i.e. relative to x ) were dominant 

for 4 5 O ,  1 3 5 O ,  225' and 315 '  and for other wind speeds only direc- 

tions of either 0 and 1 8 0  or 90 and 2 7 0 '  were dominant. The 

wind speed discrepancies need to be eliminated for a future model 

and the systematic direction biases would cause difficulties for 

any data assimilation method that depended heavily on correct 

wind directions. It would be possible to monitor the wind 

recoveries from a model and to determine areas of the ocean and 

wind speed ranges for which these various discrepancies occur. 

0 

0 0 0 
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Woiceshyn, et al. (1986) compared winds recovered from pairs 

of vertically polarized backscatter estimates 90' apart with 

winds recovered from pairs of horizontally polarized backscatter 

estimates 90 apart for the same location on the ocean for the 

available Mode 4 data from the SEASAT-SASS. The SASS-1 model func- 

tion was used with the SOS wind recovery algorithm, Jones, et al. 

(1982). Except for the logarithmic terms in ( 7 7 ) ,  pairs of 

backscatter estimates about 90" apart often yield the same re- 

sults for both the SOS and the MLE. Differences are described in 

Pierson (1984) for the SASS-1 model function. Other slight dif- 

ferences will be investigated in terms of the design features of 

a scatterometer in a subsequent section. 

0 

If the backscatter model that was chosen would have the 

property that horizontally polarized backscatter predicts higher 

winds than vertically polarized backscatter, the four backscatter 

estimates make it possible to detect this kind of discrepancy and 

to understand it so that the model can be corrected. consis- 

tently erroneous wind directions can be found and corrected. 
Also 

11.3 Detectinq larqe wind speed discrepancies between 

models for vertically and horizontally polarized data. Although 

it is not essential to know the inverse of Eqn. ( 7 8 )  as in Eqn. 

( 7 9 ) ,  enough can be learned about such inverses for any of the 

models described above to make it possible to describe the proper- 

ties of the backscatter estimates in terms of these inverses for 

analysis purposes. 
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Also if the sample values equal the model values, ( 7 7 )  is 

identically zero. Were it not for the terms involving the natural 

logarithms, the value of zero would be a maximum. The 

logarithmic terms are a logical consequence of the definition of 

a maximum likelihood estimate, and the actual maximum will be 

somewhat greater than zero and not at the value for an input 

without sampling variability. Maximum likelihood estimates are 

not necessarily unbiased. The effect of the logarithmic terms 

appears to be rather small, and it will be neglected in this sec- 

tion, to be discussed in more detail in terms of design data. 

Fig. 9a illustrates possible backscatter cuwes versus X for 

some fixed value of for one of the outer 25  by 25  km areas of 

the swath. The figure is schematic so that no scale is given for 

the vertical axis. The upper continuous curve shows the variation 

of vertically polarized backscatter versus X for some fixed value 

o,, for the incidence angle appropriate to the area. The in- 

cidence angles for the forward 45' beam and the aft 1 3 9  beam are 

nearly equal so that the slight difference can be neglected for 

illustrative purposes. The next continuous curve from the top 

shows the variation of horizontally polarized backscatter versus 

X for ul for the 115' beam for a lower incidence angle ap- 

propriate to that beam. The lowest continuous curve is for 

horizontal polarization versus x at the incidence angle for the 

45' beam for ol. The two dashed curves correspond to the values 

predicted by the model in use for fil for horizontal polarization. 

For the area under consideration, four estimates of the 

backscatter will be obtained. Suppose that the wind is from 
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Fig. 9 Model Errors that Result From an Incorrect Model for 

Horizontal Polarization: 
a) Backscatter Versus Aspect Angle for a Fixed 6 for 

Vertical and Horizontal Polarization with the 
Continuous Curves Representing a Correct Model and 
the Dashed Curves Representing an Incorrect Model 
for Horizontal Polarization: 

b) Results for the MLE if the Incorrect Dashed Curves 
Were Correct: 

c) Results for the M L E  if the Correct Curves are the 
Continuous Curves for Horizontal Polarization and 
the dashed incorrect curves are used. (See Text). 
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150'. The forward vertically polarized estimate will have an ex- 

pected value given by the point labeled, 1, and will depart in a 
random way from the point shown according to Eqn. (12). The for- 

ward horizontally polarized value will scatter in the same way 

about the point labeled, 2. The point labeled, 3 ,  is for the 

lle beam for horizontal polarization, and corresponds to a wind 

direction relative to that beam from 80 ' .  The point labeled, 4, 
0 corresponds to the 135' beam and falls at a wind direction of 60 

relative to that beam. The two points shown by the x's are for 

the model predictions for horizontally polarized backscatter. 

Fig. 9b illustrates what numerical results could be obtained 
under the assumption that the two lower dashed curves for 

horizontal polarization and the upper continuous cunre for ver- 

tical polarization were correct. The figure is schematic and no 

vertical scale is needed. Consider the evaluation of the terms 

involving o k l  in Eqn. ( 7 7 ) .  the continuous curve with a minimum 

at O o ,  a maximum at 90 and so on, is the graph of the inverse of 

Eqn. ( 7 8 )  as in Eqn. (79) as X is varied. 

0 

If the wind direction was from the direction, X, relative to 

X,, then the wind speed would have to be the value graphed so 

that the corresponding backscatter value from Fig. 9a would have 

been the measured value. If the wind direction in Fig. 9a is 

changed, the inverse curve will change by moving up or down rela- 
tive to ul. Relative to Xofor inverse curves for the 45' beam, 

all inverse curves have a minimum at 0 , a maximum near g o o ,  a 

minimum with similar properties, 

0 

0 at 180°, and a maximum near 270 
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properly phase shifted, for all of the other inverse curves. For 

error free data, they must intersect at the input wind speed and 

direction for a model and its inverse. 

The model values always equal the value of uhl (with its 
sampling variability) on this curve. Thus whatever the estimate 

of u W l I  there will be a locus of points in the n I  X plane such 

that these two terms in (77) are zero. Were (77) evaluated at 

points in the fi I X plane not on the curve the numerical values 

would rapidly become more and more negative. The smaller the stan- 

dard deviation of the estimate the more rapidly the ridge-like 

form following the curve becomes very negative. 

0 

The continuous curve with a maximum near 0" and a minimum at 

for the upper curve of 
0 

90' corresponds to the value labeled uVV4 

U0 four peaks would appear at the four points where the two 

curves cross. These four values of wind speed and corresponding 

directions, one in each quadrant, represent the usual four vector 

winds recovered by the operational mode of the SEASAT-SASS. Only 

those points where the curves cross are consistent with a pos- 

sible vector wind for the area sampled. 

Fig. 9a. Were (77) evaluated for the two values of Owl 0 and 

w4 

The dashed curve with the minimum of the two minima at 290' 

(360 -70 ) represents the inverse curve for the horizontally 

polarized measurement from the beam at 115 . The minima for this 

curve are different because in Fig. 9a upwind horizontal polariza- 

tion is shown to be stronger than downwind horizontal 

polarization. 

away from the forward beam produces the result that although 

0 0  

0 

0 0 The shift away from 90 to the forward beam to 70 

this 
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dashed curve passes through the point corresponding to i1 at 
150 , it is far from the speeds and directions for which the pair 

of curves for the vertically polarized values crossed for the 

values near 30 and 210 . Two of the peaks in the value of (77) 

would be greatly reduced by this third contribution to the 

evaluation. 

0 

0 0 

The remaining dashed curve is for the horizontally polarized 

It again passes through the value fi l  at 150'. estimate, aVV2 . 
The four curves in the vicinity of a direction of 330' come close 

together, but do not all pass through a common point. If (77) 

has a low value at this point, it could be quite a bit higher 

than Contours for Eqn. (77) for an ap- 

propriate area of the fi, x plane could be revealing for a chosen 

model and for known design values of a, B and Y. Had the measure- 

ments had no sampling variability and had the model been correct, 

Eqn. (77) would have its maximum at the assumed input, f i l ,  150'. 

0 

the value at 150' and ul. 

Fig. 9b also illustrate an important feature of Eqn. (77). 

Sampling variability effects have been neglected. Each of the 

estimates f o r  the area under analysis is subject to the effect of 

sampling variability as in Eqn. (12). The random variables, say, 

to t4 have an equal chance of being either positive or 

negative, and thus each of the four curves in Fig. 9b has an 
equal chance of shifting up or down. There are 16 possibilities 

I as shown in Table 4 .  

I If all four curves shift upward, they could all still inter- 

i sect at nearly the same wind direction, but at a higher value 

than gl .  If all four curves shift downward, the result would be 
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TABLE 4. COMBINATIONS SUCH THAT Uwlr (3432 I am3 AND ow4 
CAN BE GREATER THAN (+) OR LESS THAN (-) THE 
EXPECTED VALUE IN THE ORDER GIVEN. 
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a lower wind at nearly the same direction. 

Other kinds of shifts could also result in points in the u, 
Xplane such that the four curves come close together and produce 
a large value for the maximum of the maxima of the M L E .  Large 

values for the maximum of the maxima of the MLE do not always 

mean that the speed and direction recovered by the MLE are more 

accurate than smaller values for the maximum of the maxima. 

The shifts in the curves as a result of these random effects 
can at times produce an incorrect wind speed and direction. For 
Fig. 9b, the cluster of crossing curves that produce intersec- 

tions near 330' as a result of shifts because of the random 

variability could move more closely together and perhaps even 

merge into one point. 

Since the dashed curves for horizontal polarization in Fig. 

will 9a are assumed to be incorrect, the pattern shown in Fig. 9b 
not occur. 

If, in fact, the variation of horizontally polarized 

backscatter is shown by the two continuous curves in Fig. 9a for 

a wind speed of fll and if the model is using the values for the 

dashed curves for a wind speed of U1 the result would be very 

different from the curves shown in Fig. 9b as shown in Fig. 9c. 

The effect of an incorrect model would be to shift the two curves 

for the horizontally polarized value for the inverse curves from 

am2 and aM3 upward in the u ,  X plane by many m/s because the 

horizontally polarized backscatter values that were actually ob- 

tained would be higher than the model predicts for nl. Whatever 

- 

0 0 
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the maximum of the maxima of Eqn. (77) would be, it would have to 

be very small compared to values that would be obtained for ( 7 7 )  

from Fig. 9b. There is no point in the 5, x plane where all four 
curves come close to the value U1 and 150'. This would be an 

operational clue that something was not being accounted for cor- 

rectly by the model. 

Without any knowledge of the actual wind from a conventional 

source, the two backscatter estimates for horizontal polarization 

could be used to recover (for this example, others would differ) 

four vector winds, and the two vertically polarized estimates 

could be used to recover four more. The differences in the 

speeds, which will be large, for the four horizontally polarized 

winds and the four vertically polarized winds provide data to 

permit adjusting the model so that the recovered winds will be 

more nearly in agreement. 

It could also be possible that the curve for vertical 

polarization is too high and would need to be lowered. A f e w  con- 

ventional winds included in a set of such calculations can 

quickly provide information on which way the model needs to be 

adjusted especially if the random intervals derived above are 

used to determine how far off the model is compared to the de- 

sired result. The sampling variability of any new design needs 

to be known so that statistics can be calculated to determine whe- 

ther the effect is real or the result of sampling variability. 

There are four possible ways to pair the four estimates that 

would be obtained such that the two estimates that are used are 

either 70" or 90" apart for antenna pattern 1 in Fig. 2. Each 
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one can be identified in Fig. 9c for the example under analysis. 

Each pair would permit the rapid recovery of four wind vectors 

(or two or three as special cases) with, usually, one per 

quadrant relative to x,. As in Fig. 9c, there would be 12 plus 2 

(usually 16) quite different speeds and directions. For each 

pair, the MLE speeds and directions can be used to compute the 

backscatter from the model that ought to have been the expected 

value for the other two backscatter estimates that were not 

used. If the random intervals defined by (34), ( 5 0 )  and (si), do 

not enclose these model values for an appropriate percentage of 

data sets for a given incidence angle, the data alone are suf- 

ficient to reveal the inadequacy of the model. 

11.4 Detecting model errors that result from incorrect 

upwind-crosswind and downwind-crosswind differences. Fig. 10 il- 

lustrates the reason for the SEASAT-A SASS-1 model function to 

have the propensity to recover the two types of wind direction 

recoveries that were unrealistic as described by Woiceshyn, et 

al. (1987). It extends the concept to winds that could be 

recovered by this new instrument if the model used had similar 

errors. Fig. 10a illustrates two possible models for the varia- 

tion of backscatter with aspect angle. For vertical polarization 

at a fixed wind speed for the upper two curves, one is continuous 

and one is dashed. The curves can be used for the 45 and 135 

beam. The next two, one dashed and one continuous, are for the 

115' degree beam for horizontal polarization, and the lowest two 

are for the 45' beam for horizontal polarization. 

0 0 
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Fig. 10 Model Errors that Result From Incorrect Upwind-Crosswind 
and Downwind-Crosswind Differences: 

and the Four Expected Values for Each, 

for Expected Values, 

for Expected Values. 

a) Backscatter Versus Aspect Angle for Two Possibilities 

b) Continuous Curves Correct and Used to Recover Winds, 
c) Continuous Curves Correct, Model Uses Dashed Curves 

d) Dashed Curves Correct, Model Uses Continuous Curves 
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The figures are schematic. No vertical scales are needed. 

It is assumed that the wind is ul from 170' and four expected 

values are shown for the continuous curves and four for the 

dashed curves. The estimates will scatter about the expected 

values as in (12). 

Fig. 10b is the result of assuming that the continuous 

curves is Fig. 10a are correct and are used to recover winds from 

actual data (with sampling variability neglected). Fig. 1Oc is 

the result of assuming that the continuous curves correspond to 

the real data, and the model is the dashed curves. Fig. 10d is 

the of assuming that the dashed curves provide the actual 

data, and the continuous curves are the model. 

result 

The difference between the various continuous and dashed 

curves for Fig. 10a is that the upwind-crosswind and downwind- 

crosswind differences in the backscatter are greater for the con- 

tinuous curves than for the dashed curves. A larger upwind- 

downwind difference is also shown for the horizontally polarized 

aspect angle variation. 

Fig. 10b is what would be expected in the absence of sam- 

pling variability if the model were correct. The continuous 

curves are for vertical polarization and the dashed ones are for 

horizontal polarization. The greater upwind-downwind difference 

for horizontal polarization, plus the 115' degree beam, helps to 

make the one point in the n, X plane where all four curves pass 

through 6 and 170' distinct from other possibilities. 

Fig. 1Oc is the result obtained if the dashed curves in Fig. 
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10a are for the model and the continuous curves are for the ac- 

tual conditions. The @@true@@ backscatter values for both vertical 

polarization and horizontal polarization at the assumed direction 

of 170' are too high compared to the model values for the ver- 

tically polarized beam at 45' and the horizontally polarized beam 

at 45'. The vertically polarized value for the beam at 135' (at 

80 for X) and the horizontally polarized beam at 115' (at 100' 

for x) are too low compared to the model. 

0 

When the model is used to try to recover the wind speeds and 

directions, the inverse curves for the 45 beam, both horizontal 

and vertical have to move up relative to and the inverse 

curves for the 115' to 

move down. As shown in Fig. lOc, the upper and lower pairs of 

curves might not intersect at all. A maximum likelihood estimate 

based on the vertically polarized data alone would yield very 

weak maxima for (77) as would the two curves for horizontal 

polarization. The value of the maxima from (77) for all four 

input backscatter values would also be low. 

0 

(horizontal) and 135' beam (vertical) have 

There would most likely be two maxima for (77) one near 0' 

and the other near 180' for the conditions shown. A true wind 

near 90' would place the lower curves in Fig. 1Oc well above the 

upper curves and give maxima for (77) near 90' and 270'. 

Horizontal lines are shown on Fig. 10a from the maxima and 

minima of the dashed curves to the point of intersection with the 

continuous curves. For any set of data recovered by NSCAT such 

that the wind direction for, say, the 45' beam lies within the 

range of these horizontal lines, the backscatter values obtained 

101 



by the scatterometer will be higher (or lower) that than those 

for the model because the up wind-crosswind and down wind- 

crosswind differences are larger than the model predicts. For 

this example, backscatter values larger than the model predicts 

for the upper continuous and dashed curves would occur. The range 

is 2 25' to 30' about the maxima and minima of the various pairs 
of curves, and unless the wind direction is somewhere near 45' , 
135', or 310' plus or minus the range for which the actual 

backscatter exceed the maxima and minima of the model, the result 

will always be like Fig. lOc, except that the curves will move 

closer together. For 5 25' about the maxima and minima, 200' 

degrees of possible directions will all be recovered by (77 as 

pairs (or single values for one of two directions) at either 0' 

and 180' or 90' and 270'. Even if backscatter values are 

recovered within the range of possible values required by the 

model, the values will correspond to wind directions closer to 

O', 90°, 180' and 270°, and all recovered winds directions would 

be to O', 90°, 180' and 270' than the correct directions. 

Those points near where the continuous and dashed curves cross 

would be the only wind direction that would be nearly correct. 

225', 

closer 

Fig. 10d is the reverse of Fig. 1Oc. The continuous curves 

in Fig. 10a are the model values and the dashed curves are the 

actual values that could be recovered for some fixed wind speed, 

U1, as a function of aspect angle. For an assumed wind direction 

of 170°, the inverse curves for the 45' beams must move down 

because the actual backscatter values are lower than those for 

the model. Those for the 115' and 135' beams must move up 

because the actual backscatter values are greater than those 

- 
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for the model. Eqn. (77) might recover a wind speed and direc- 

tion somewhere near 115' and 250'. The vertically polarized pair 

of backscatter values alone would yield four winds with direc- 

tions near 65', l2Oo, 245' and 290". The horizontally polarized 

pair would yield winds with directions near 80°, 115", 2550 and 

305' as sketched. 

From Fig. loa, it would never be possible to obtain 

backscatter estimates that correspond to the values required by 

the model for the ranges of wind directions shown by the 

horizontal dashed lines. The ranges of wind directions that 

would be obtained by (77) must be for the open spaces between the 

horizontal lines of Fig. 9a. 

Even if a single vector, 6(?) , X ( ? )  is selected by ( 7 7 ) ,  it 

will be far from the correct value for an extensive range of pos- 

sible correct wind direction. The wind directions will be concen- 

trated within a small range of directions centered near 45O I 

135', 225' and 315'. The illustration consequently explains the 

results of Woiceshyn, et al. (1987) in terms of the SASS-1 model 

function and pairs of vertically polarized or horizontally 

polarized backscatter estimates 90' apart from the SEASAT-SASS . 
For the SASS-1 model function, the disparity because of the model 

was even more concentrated near 45 , 135', 2250 and 315' than 

Fig. 10 illustrates. 

0 

11.5 Additional considerations. Figs. 9 and 10 illustrate 

another important feature for attempts to develop a good model 

for backscatter from waves and to relate the backscatter to the 

local wind speed and direction. Any model can be used to 
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simulate backscatter values and the effects of sampling 

variability can be simulated by Monte Carlo methods. Since the 

model is also used to recover the winds, results such as Fig. 9c, 

1Oc or 10d cannot be simulated unless deliberate kinds of dif- 

ferences between the model used to generated simulated 

backscatter estimates and the model used to recover the winds are 

introduced. If this were done, there is hardly any need to in- 

troduce sampling variability. Curves such as those in Figs. 9 

and 10 quickly reveal the inconsistencies that will be the re- 

sult. 

Unless the effects of sampling variability completely 

dominate differences between the model used and what is obtained 

by a scatterometer, a subset of the data for incidence angles 

nearest to 20°, 25O, 30°, 35' and so on for the 4 5  forward beam 

for every fifth point parallel to the subsatellite track could 

quickly reveal the kinds of inconsistencies considered for Figs. 

9 and 10. The random intervals that can be computed for each of 

the four estimates per 25 by 25 km area can also quickly reveal 

whether or not unique functions such as Eqns. ( 7 )  and ( 8 )  exist 

as functions of 6 and X with the alternative that a much more com- 

plicated model needs to be considered. 

0 

The pattern shown by Fig. 1Oc can be quickly detected by a 

validation procedure when a scatterometer becomes operational. 

The recovered winds will have directions near 0' and 180' as il- 

lustrated (or 90' and 270 as a second possibility). The model 

values for the backscatter for each beam can be found for these 

winds. The four sample values each have an appropriate random 

0 

104 



interval. If these random intervals do not enclose the model 

values (they may be very, very far apart), then the first type of 

error illustrated by Fig. 10a is evident. 

In contrast, the pattern shown by Fig. 10d is more difficult 

to detect. The sample values occur for the model curves, but not 

at a correct aspect angle. A test similar to the one for Fig. 

1Oc would not reveal any inconsistency. A running count of 

recovered wind directions for selected incidence angles and 

recovered wind speeds could eventually show the concentration of 

directions near 4 5 O ,  and so on, and the absence of directions 

near 0 , 90 and so on. 0 0 

Figs. 9 and 10 also illustrate an advantage of the sampling 

pattern that was used as opposed to the alternative described in 

Part 1.2. For the alternative pattern there would be only one in- 

verse curve with maxima at 90' and 270'. Two others would have 

minima near 110 and 290 , and the last one would have minima 

near 90" and 270'. Three of the inverse curves would track the 

same general region of the 0, x plane. Only one inverse curve 

could intersect these three curves at four possible wind direc- 

tions. If this one curve is high or low as a result of sampling 

variability, there will be a correlation between the errors in 

the recovered wind speeds and the recovered wind directions. 

Also the upwind-downwind difference for horizontally polarized 

backscatter for high winds and high incidence angles for the for- 

ward 4 5  beam for the illustrated sampling pattern could at times 

eliminate a false solution by patterns such as those in Figs. 9 

and 10. 

0 0 
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M L E  estimates of b, X but upon 

values for the four tils would 
substitution into (77) the same 

result. Thus if one of the values 

Results similar to the above analysis were obtained by 

Pierson and Salfi (1982) for the study of the NOSS. There are 

numerous examples of curves similar to Figs. 9b and lob. The 

kinds of errors found by Woiceshyn, et al. (1986) and Woiceshyn, 

et al. (1987) were not known at that time. 

11.6 Additional applications of the random intervals. If 

and the logarithmic terms in (77) are omitted, and if t l ,  t 

t 4  represent the sampling variability of the four backscatter 

random variables as in (12), the substitution of four values for 

2 '  t 3  

(12) into (77) yields 

(80) 'L 2 2 2 2 MLE ( u ,  X) = - ( t l  + t 2  + tg + t 4 )  

which suggests that the MLE varies something like a gamma (or Chi 

Square) PDF. This is not correct for reasons given in section 

11.3. The minimization of (77) juggles these four quantities 

relative to the "truett wind by allowing one term to become larger 

if other terms can be made even smaller. 

However, the calculation of the MLE involves the separate 

calculation of each of the first four terms in the sum. These 

are usually combined to give single values for the maxima of 

(77). The numerical values of the first four terms in (77) con- 

tain information that is not in their sum especially if the 

values are computed in terms of a standard deviation in the 

denominator before squaring so as to obtain the signs of the t's. 

The values from the model can be computed from each of the 
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of ti is outside of the range 1.645, the 90% random interval 

for the corresponding sample value will not include the model 

value. The M L E ' s  will not be sensitive to some of the combina- 

tions of sign shown in Table 4, but they can be sensitive to 

forced maxima such that the four inverse curves do not come close 

to intersecting at a point in the u, x plane. 

For each of the four values of the ti, a success can be 

defined as a values within 1.645 and a failure as a value out- 

side of this interval. The probability of a success if the tvtruett 

wind were known for a tttruett model would be 0.90 and the 

probability of a failure if the tttruett wind were known for a 

Ittruett model would be 0.10. For four values of the ti, the re- 

sult can be interpreted in terms of the binomial distribution as 

in Table 5. 

i For, say, 10,000 successive recoveries of maximum likelihood 

I estimates, the successes will be biased high compared to the 

"true" values. This would decrease the probabilities for two or 

fewer successes. If, then, many more than 486 recoveries have 

only 2 successes, or if many more than 36 recoveries have only 

one success, of if there are many more than one recovery without 

a success, for all of the maximum likelihood estimates, further 

study of the model is needed. Repeated values for the maximum of 

the first four terms in the M L E  less than -4,(1.645) = -10.8241 

virtually assure that the model is incorrect. Also for all of 

the maximum likelihood estimates for a given cell, a simple count 

of the successes and failures provides a ranking for the wind 

speeds and directions that may be helpful in removing ambiguous 

~ 

I 

l 

I 
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TABLE 5 PROBABILITIES FOR A BINOMIAL PROBABILITY DENSITY 
FUNCTION FOR A SAMPLE OF FOUR SUCH THAT THE 
PROBABILITY OF SUCCESS IS 0.90. 

0.6561 

P(3 successes, 1 failure) - - 0.2916 

0.0486 

P ( 1  success, 3 failures) - - 0.0036 

- P ( 4  successes) - 

- P(2 successes, 2 failures) - 

P(4 failures) - - 0.0001 

Sum - - 1.0000 
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solutions, especially if patterns emerge as a function of the 

quadrant for each wind. 

11.7 Applications to the SEASAT-SASS data. Except for two 

features, the Mode 4 backscatter data from the SEASAT-SASS are 

similar to the data that would be obtained by this new design. 

The SASS data can be co-located in sets of four backscatter 

estimates, two for vertical polarization and two for horizontal 

polarization, that are about 90' apart. The cell centers do not 

occur as close together as those for the new design. Except for 

the availability of the beam at 115', which often two 

of the four ambiguities, the SASS data are similar to the new 

data if a ,  B ,  y and 8 are known. 

eliminates 

However, any candidate model for backscatter can be tested 

against the above analysis and the model deficiencies, if any, 

can be found. There are ways to obtain a candidate model based 

on the SASS data for Mode 4 that can be compared with improved 

versions of the models described above. 
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12 RESOLUTION AND WAVENUMBER ALIASING 

12.1 Twenty five kilometer resolution. For 25 kilometer 

resolution, the scatter in the sample values of the four 

backscatter estimates will be similar to those shown in Fig. 5 

for any wind direction. The maximum likelihood values for the 

wind speeds and directions would scatter approximately as the 

distance between the 5% and 95% curves. For winds below about 2 0  

m / s  the errors in the wind recoveries compared to data buoy winds 

would not be too great, especially if refinements are introduced 

for low winds. Any mesoscale variability as described in Part 

8 . 5  would be masked by the effects of variability in the 

backscatter estimates. There would be eight terms to be 

evaluated in Eqn. (77) except that the logarithmic terms will be 

shown to be negligible in Part 13, to follow, so that they can be 

omitted. 

12.2 Fifty kilometer resolution. Averages of the values 

for two adjacent areas parallel to the subsatellite track can be 

formed and grouped to represent an area 5 0  km by 50 km. The ef- 

fects of sampling variability would be reduced as described 

above. With the logarithmic terms omitted, there would be eight 

terms in the applicable version of (77). How much this would 

reduce the scatter in the wind recoveries could be determined for 

any candidate model function. 

12.3 One hundred kilometer resolution. From Fig. 5, the 

recoveries for high winds will not be very good for twenty five 

kilometer resolution. They may still not be good enough for 
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fifty km resolution. There is the possibility that horizontally 

polarized backscatter will not behave in the same way as ver- 

tically polarized backscatter and will continue to increase on 

past those speeds in these figures for winds as high as to be an- 

ticipated for the most intense extratropical cyclones in the 

historical record. If horizontally polarized backscatter behaves 

differently, more accurate high winds might be recoverable. The 

winds over the Antarctic Ocean from August to October may the 

highest to be expected. 

be 

Improved computer based numerical weather predictions are one 

of the primary uses for the scatterometer winds. The present 

numerical models have yet to achieve 100 km resolution in the 

horizontal, and this, or even coarser resolution, is adequate for 

these models except near fronts. The high winds in an intense ex- 

tratropical cyclone can easily extend over areas of 1500 kilometers 

in diameter, and a 100 km resolution for these winds would be an 

important contribution. 

Sixteen 2 5  by 25 km areas grouped in sets of four see ( F i g . 1 1  

parallel to the subsatellite track would be the starting point. 

The values parallel to the track would be averaged and the four 

slightly different values of a ,  B and y would be averaged and 

then The MLE would then be computed 

by using 16 terms (see Part 13). What would result for averages 

of four at upwind was discussed for Figs. 5a to 5d. These 

ranges of uncertainty as in Fig. 6 are probably better than the 

winds reported by ships of opportunity (Dischel and Pierson 

(1986)). If the model should verify approximately as shown, the 

be reduced by a factor of 4 .  
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most extreme winds will be recovered with considerable accuracy. 

12.4 Wave number aliasing and filterinq. At any nominal scat- 

terometer resolution, there will be contributions to the estimates 

of the vector wind from both the sampling variability of the 

backscatter estimates and from the mesoscale variability for each 

of the actual ocean areas sampled by a given antenna. These pertur- 

bations will alias into lower wavenumbers. The usual assimilation 

procedures for winds in numerical models will suppress these 

aliases to some extent. For some applications of these data, 

aliasing can be reduced by considering 125 km resolution involving 

twenty five 25 by 25 km areas with the recovered wind located at 

the center square. The 125 km resolution areas could be overlapped 

by 62.5 km to produce a smooth wind field. Again, special atten- 

tion is needed near fronts. 

The various tests described f o r  the 25 by 25 km areas can all 

be extended in a straight forward way to these coarser resolution 

wind recoveries. The random intervals become much shorter, and the 

tests will reveal whether or no the coarser resolution results are 

good. Many of the hypotheses and tests described above can be 

modified to include the possibility that locally the values o f t R  

are nearly constant. 
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I 13. FURTHER CONSIDERATION OF THE MAXIMUM LIKELIHOOD ESTIMATES. 

13.1 Discussion. The use of maximum likelihood estimators to 

obtain estimates of the unknown parameters from a random sample 

with an assumed probability density functions is a powerful me- 

thod. For moderate and large samples, it often yields an estimator 

similar to the method of moments except that it is biased. Eqn. 

(77) is an application of the maximum likelihood concept in a way 

that is quite different from the usual applications of the concept. 

! 

There are other ways to estimate u and X,  and the superiority 

of the MLE for the model that will eventually be used is still to 

be proven. Tables 3.1 to 3.10 gave values for the MLE to be com- 

pared with uo = ab, as another choice for the estimate. The dif- 

ferences between and agl are quite small. 

0 

0 0 

13.2 Maximum likelihood estimates for a wider ranqe of uo.  

Given a random value of a there are two possible estimates of 

the model values. One is u i L E  and the other is oo The quan- 

tity 0iLE was computed in 5 dB steps from zero to - 4 0  dB and 

expressed in dB for both a single estimate and averages of 4 

estimates with a ,  B and y reduced by a factor of 4 .  The values, 

D and fi are the numerical results for 

0 

M' 

0 0 - u  MLE (dB) M (dB) D = a  
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for single values 
0 

of 0 and 

-0 0 
MLE(dB) - 'M(dB) O = o  

for averages of 

ratios) are given 

four values. These differences (or effectively 

in Table 6 for the values of , B and Y in 

Table 2. For high relative values of o o ,  the differences between 

the M L E  and the expected value are small compared to the ranges 

of the random intervals that have been obtained. 

A strange result is that formally Eqn. (24) for low values 
0 0 

of o can have a maximum for a negative value of O M .  This can be 

shown by substituting Oo = 0 into (24). The natural logarithm 

becomes zn (1 + (6/v)o; + (&/VI (U;)*) and for slightly negative 

values of 0; the B/Y term dominates. The theory is then con- 

tradicted by the physics and the alternate choice, mentioned 

above, namely oiLE = 0 = is correct. 0 

Eqn. (77) has the disconcerting property that one of its 

maxima will not be exactly at the input wind speed and direction 

if the random variables are replaced by their expected values 

throughout from a model. Since the values for the maximum 

likelihood estimates differ in almost a negligible way from the 

expected values and since the random interval for a given sample 

value are much much larger than the difference between OMLE and 

OM' it seems that the terms in Eqn. (77) involving the logarithms 

can be dropped in the search for the winds that fit the model. 

0 

0 

The new modified estimator would need a new name. What 
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should it be? Can it be proved to be superior to Eqn. (77)? Are 

b the differences between the winds recovered by (77) and by ( 7 7 )  
I 

1 with the logarithmic terms omitted so small that the superiority 

of over the other cannot be demonstrated by comparisons with 

conventionally measured winds? Answers to these questions are 

still to be determined. 

one t 

The important and basic feature of (77) is still retained if 

the logarithmic terms are omitted. The denominators of the four 

remaining terms, and as extended to lower spatial resolution all 

similar terms, are a function of the model values and not the 

sample values. This assigns the proper weights to each term in 

the sum and places greater emphasis on the terms with lowest 

variance. 

the 
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14 SUMMARY 

14.1 The probability density function for backscatter as a 

random variable. The PDF for backscatter estimates is very dif- 

ferent from the usual normal PDF in that the variance is a known 

function of the first moment (or mean). This feature is used in 

several different ways to obtain statistics, with appropriate 

probabilities, for the interpretation of models for the expected 

value of the backscatter as a function of polarization, incidence 

angle, aspect angle and wind speed. 

The backscatter values obtained by a scatterometer are random 

variables. These random variables may either be completely indepen- 

dent in the probability sense from one estimate to the next or par- 

tially correlated because the unknown errors for the calculation of 
0' as a result of orbit and attitude uncertainties are slowly 

varying along the orbit. A test to find out whether or not succes- 

sive values of 0' are truly independent, or partially correlated, 

has been devised. 

Statistical estimation procedures require that all calcula- 

tions be based on sample values. It is usually also required that 

the sample values be truly random and independent. Time series 

theory, which involves spectra and cross spectra, is needed if the 

successive random variables are not white noise; i.e. independent 

in the probability sense and normally distributed. 



Quantities calculated from random variables that do not in- 

volve the unknown parameters of an assumed probability density 

function can be used to determine either point estimates for the 

unknown parameters or intervals with random end points with known 

probabilities of containing the unknown parameters. Such quan- 

tities are statistics. All of the above analysis is based on the 

calculation of various statistics. 

14.2 Recovering wind speed and direction estimates. Given 

a model for the expected values of the backscatter as a function 

of polarization, wind speed, wind direction and incidence angle, 

the constraints imposed by the model are imposed on a random 

sample of backscatter estimates so as to maximize the probability 

that the independent sample values came from PDF's with expected 

values and variances determined by the model. The result is 

similar to a maximum likelihood estimate in form, but it is based 

on products of at least four different PDF's. 

The resulting equation contains terms that involve the 

natural logarithm of the variance, which would follow from an 

exact application of probability theory. However, in general, 

maximum likelihood estimators can be biased. Calculations of the 

maximum likelihood estimates for one sample and for the average 

of four samples show that the maximum likelihood estimates differ 

negligibly from the expected value of the random variable. It is 

concluded that the logarithmic terms have a small effect on the 

estimates of 5 and X and that they introduce other undesirable 

theoretical features. They can be left out of the equation. 
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